Wheat (Triticum aestivum L.) flour properties necessary for optimal tortilla production have not been identified. Transgenic wheats (Triticum aestivum L.) overexpressing high molecular weight glutenin subunit (HMW-GS) 1Dy10 were used to make tortilla and their quality was evaluated. The level of HMW-GS 1Dy10 in flours derived from transgenic wheats was 2.5-5.8-fold greater than in controls. Polymeric proteins in the transgenic samples had a molecular weight distribution shifted toward larger polymers as indicated by increased levels of polymeric proteins present and greater M(w) averages of the largest fractions in the insoluble polymeric proteins. Dough derived from transgenic wheats had greater resistance to extension and lower extensibility than controls. Tortilla quality evaluation revealed that tortillas originated from transgenic wheats had decreased diameter, greater thickness and rupture force, and lower rollability scores and stretchability than controls. The presence of 1RS chromosomal translocations from rye (Secale cereale L.) in transgenic wheat decreased the negative effects of overexpression of HMW-GS 1Dy10, as tortillas made with this flour mostly exhibited quality properties similar to those made from control flour. Results suggested that the negative effects of overexpression of HMW-GS 1Dy10 on tortilla properties were derived from a nonideal gluten matrix formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf900629s | DOI Listing |
Vavilovskii Zhurnal Genet Selektsii
November 2024
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia.
Amaranth is an ancient crop of the family Amaranthaceae, but it is fairly new to Russia. Its seeds and leaf biomass contain a high-quality gluten-free protein, fatty acids, squalene (a polyunsaturated hydrocarbon), flavonoids, vitamins, and minerals. A comprehensive study of amaranth, enhancement of its breeding, and development of new cultivars will contribute to food quality improvement through the use of plant raw materials enriched for wholesome and highly nutritious components.
View Article and Find Full Text PDFPhysiol Plant
December 2024
College of Life Sciences, Qingdao Agricultural University, Qingdao, PR China.
Melatonin (MT) serves an indispensable function in plant development and their response to abiotic stress. Although numerous drought-tolerance genes have been ascertained in wheat, further investigation into the molecular pathways controlling drought stress tolerance remains necessary. In this investigation, it was observed that MT treatment markedly enhanced drought resistance in wheat by diminishing malondialdehyde (MDA) levels and augmenting the activity of antioxidant enzymes POD, APX, and CAT compared to untreated control plants.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
The plant peptide-containing sulfated tyrosine (PSY) family plays critical roles in plant cell proliferation and stress responses. However, the functional characterization of the PSY peptide family in wheat remains unclear. This study systematically identified a total of 29 genes at the genome-wide level, classifying them into six subgroups based on PSY-like motifs.
View Article and Find Full Text PDFPhysiol Plant
November 2024
Department of Botany, Panjab University, Chandigarh, India.
Funct Integr Genomics
November 2024
Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia.
APX proteins are HO-scavenging enzymes induced during oxidative stress. In the first part of this study, we provided an extensive knowledge on the APX family of Triticum durum, TdAPX and their related TdAPX-R, via the genome wide analysis. The outcomes showed that these proteins are clustered into four major subgroups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!