A dexamethasone-loaded PLGA microspheres/collagen scaffold composite for implantable glucose sensors.

J Biomed Mater Res A

Department of Chemical & Biomedical Engineering, University of South Florida, Tampa, FL 33620-5350, USA.

Published: April 2010

We have developed a new dexamethasone (Dex)-loaded poly(lactic-co-glycolic acid) microspheres/porous collagen scaffold composite for implantable glucose sensors. The scaffolds were fabricated around the sensing element of the sensors and crosslinked using nordihydroguaiaretic acid (NDGA). The microspheres containing Dex were incorporated into the NDGA-crosslinked collagen scaffold by dipping in microsphere suspension in either water or Pluronic. The loading efficiencies of Dex in the microspheres and the scaffold were determined using high performance liquid chromatography. The microspheres/scaffold composite fabricated using microspheres in the hydrogel solution had a better loading efficiency than when microspheres were in water suspension. The composite fabricated using the hydrogel also showed a slower and more sustained drug release than the standard microspheres in vitro during a 4 week study and did not significantly affect the function of the sensors in vitro. The sensors with the composite that were still functional retained above 50% of their original sensitivity at 2 weeks. Histology showed that the inflammatory response to the Dex-loaded composite was much lower than for the control scaffold at 2 and 4 weeks after implantation. The Dex-loaded composite system might be useful to reduce inflammation to implanted glucose sensors and therefore extend their function and lifetime.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32512DOI Listing

Publication Analysis

Top Keywords

glucose sensors
12
scaffold composite
8
composite implantable
8
implantable glucose
8
collagen scaffold
8
composite fabricated
8
dex-loaded composite
8
composite
7
sensors
6
scaffold
5

Similar Publications

In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD).

View Article and Find Full Text PDF

One of the health challenges in the 21st century is to rethink approaches to non-communicable disease prevention. A solution is a smart city that implements technology to make health smarter, enables healthcare access, and contributes to all residents' overall well-being. Thus, this paper proposes an architecture to deliver smart health.

View Article and Find Full Text PDF

Biotechnology Revolution Shaping the Future of Diabetes Management.

Biomolecules

December 2024

Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.

Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982.

View Article and Find Full Text PDF

Alternariol (AOH) has attracted much attention as an emerging toxin in edible herbs that can pose potential carcinogenic risks to human. However, the rapid detection of AOH to ensure food safety remains a challenge. Here, a CRISPR-Cas12a-mediated aptamer-based sensor (aptasensor) was proposed for the sensitive quantification of AOH by using a personal glucose meter.

View Article and Find Full Text PDF

Aims: According to the 2023 International Consensus, glucose metrics derived from two-week-long continuous glucose monitoring (CGM) can be extrapolated up to 90 days before. However, no studies have focused on adults with type 1 diabetes (T1D) on multiple daily injections (MDIs) and with second-generation intermittently scanned CGM (isCGM) sensors in a real-world setting.

Methods: This real-world, retrospective study included 539 90-day isCGM data from 367 adults with T1D on MDI therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!