Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat's calvaria. Bone defects of 8 mm in diameter were surgically created in the calvaria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect's region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect's area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation could be seen. In conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat's calvaria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32491 | DOI Listing |
Int J Biol Macromol
January 2025
Institute of Microengineering and Nanoelectronics (IMEN), The National University of Malaysia, Bangi, Selangor 43600, Malaysia.
This article provides a comprehensive review of chitosan-based hydrogels for transdermal drug delivery. It covers various aspects including the chemical structure of chitosan and its derivatives, crosslinking agents, hydrogel morphology, and drug loading and release behaviors. The review draws on 16 studies sourced from Scopus, focusing on how the composition and structure of hydrogels influence drug release.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Pharmaceutics, School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha, India. Electronic address:
To overcome the barriers often met by traditional ophthalmic formulations, polymeric films can be utilized as an alternative to enhance drug retention duration while managing medication release. In the current investigation, polymeric films made of poly (vinyl) alcohol (PVA) and chitosan (CS) loaded with Moxifloxacin Hydrochloride (M-HCl) and plasticized with Glutaraldehyde were formulated as potential ophthalmic delivery for the treatment of conjunctivitis. The thickness, surface pH, opacity, folding endurance, and % hemolysis were measured, followed by the transparency, microscopy, electrical conductivity, mechanical strength, swelling index, and invitro drug release studies.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil. Electronic address:
The microencapsulation of Lactocaseibacillus rhamnosus GG in a matrix of sodium alginate, xanthan gum, gum arabic and chitosan hydrochloride is a promising strategy for protecting this probiotic during passage through the gastrointestinal tract. This study evaluated the influence on the viability of Lactocaseibacillus rhamnosus GG encapsulated with these polymers by external ionic gelation with vibratory extrusion and the microcapsules that showed the best results of capsulation efficiency, viability, size and morphology were analyzed by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and exposure to environmental stress conditions and gastrointestinal simulation. The result revealed encapsulation efficiency values above 95 % for all formulations and survival rate higher than 6 log CFU/mL for most analyzed groups.
View Article and Find Full Text PDFJ Food Sci
January 2025
Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P.R. China.
The applications of resveratrol (RES) and puerarin (PUE) with notable physiological functions are greatly limited in functional food and pharmaceutical industries due to their poor water solubility and chemical instability. Accordingly, co-loading of RES and PUE into chitosan-based nanoparticles (NPs) is performed here by an anti-solvent method to improve their bioavailability. The fabricated NPs at 8:1 mass ratio of carboxymethyl chitosan (CMC) to chitosan hydrochloride (CHC) with the particle size of 375.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China. Electronic address:
Adhesive hydrogels have been widely studied as wound dressings due to their excellent biocompatibility and biological activity. However, most designed hydrogels still exist limitations including potentially toxic monomer, complex preparation process and non-degradable property. Here, a natural and degradable gelatin/casein hydrogel was prepared by enzymatic cross-linking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!