Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/459918a | DOI Listing |
J Vis Exp
November 2024
Cellular and Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University; Laboratory of Malaria and Vector Research and National Institutes of Allergy and Infectious Diseases, National Institutes of Health;
Commun Biol
November 2024
Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
Plasmodium male and female gametocytes are the gatekeepers of human-to-mosquito transmission, therefore essential for propagation of malaria within a population. Whilst dormant in humans, their divergent roles during transmission become apparent soon after mosquito feeding with a rapid transformation into gametes - males forming eight motile sperm-like cells aiming to fertilise a single female gamete. Little is known about how the parasite fuels this abrupt change, and the potential role played by their large and elaborate cristate mitochondrion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112.
malaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells, requires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron.
View Article and Find Full Text PDFbioRxiv
June 2024
Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States.
malaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells, requires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!