RNA molecules are important factors involved in different cellular processes and have a multitude of roles in the cell. These roles include serving as a temporary copy of genes used for protein synthesis or functions in translational machinery. Interestingly, RNA is so far the only biological molecule that serves both as a catalyst (like proteins) and as information storage (like DNA). However, in contrast to proteins well known to be able to self-associate in order to maintain the architecture of the cell, such RNA polymers are not prevalent in cells and are usually not favored by the flexibility of this molecule. In this work, we present evidence that such a polymer of a natural RNA, the DsrA RNA, exists in the bacterial cell. DsrA is a small noncoding RNA (87 nucleotides) of Escherichia coli that acts by base-pairing to mRNA in order to control the translation and the turnover of some mRNA, including rpoS mRNA, which encodes the sigma(s) RNA polymerase subunit involved in bacterial stress response. A putative model is proposed for the structure of this RNA polymer. Although the function of this polymerization is not known completely, we propose that the formation of such a structure could be involved in the regulation of DsrA ncRNA concentration in vivo or in a quality control mechanism used by the cell to eliminate misfolded RNAs.

Download full-text PDF

Source
http://dx.doi.org/10.4161/rna.6.4.8949DOI Listing

Publication Analysis

Top Keywords

rna
9
dsra small
8
small noncoding
8
noncoding rna
8
auto-assembly coli
4
dsra
4
coli dsra
4
rna molecular
4
molecular characteristics
4
characteristics functional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!