Cellular biophysics during freezing of rat and mouse sperm predicts post-thaw motility.

Biol Reprod

Departments of Mechanical Engineering, Biomedical Engineering, Urologic Surgery, and Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA.

Published: October 2009

Though cryopreservation of mouse sperm yields good survival and motility after thawing, cryopreservation of rat sperm remains a challenge. This study was designed to evaluate the biophysics (membrane permeability) of rat in comparison to mouse to better understand the cooling rate response that contributes to cryopreservation success or failure in these two sperm types. In order to extract subzero membrane hydraulic permeability in the presence of ice, a differential scanning calorimeter (DSC) method was used. By analyzing rat and mouse sperm frozen at 5 degrees C/min and 20 degrees C/min, heat release signatures characteristic of each sperm type were obtained and correlated to cellular dehydration. The dehydration response was then fit to a model of cellular water transport (dehydration) by adjusting cell-specific biophysical (membrane hydraulic permeability) parameters L(pg) and E(Lp). A "combined fit" (to 5 degrees C/min and 20 degrees C/min data) for rat sperm in Biggers-Whitten-Whittingham media yielded L(pg) = 0.007 microm min(-1) atm(-1) and E(Lp) = 17.8 kcal/mol, and in egg yolk cryopreservation media yielded L(pg) = 0.005 microm min(-1) atm(-1) and E(Lp) = 14.3 kcal/mol. These parameters, especially the activation energy, were found to be lower than previously published parameters for mouse sperm. In addition, the biophysical responses in mouse and rat sperm were shown to depend on the constituents of the cryopreservation media, in particular egg yolk and glycerol. Using these parameters, optimal cooling rates for cryopreservation were predicted for each sperm based on a criteria of 5%-15% normalized cell water at -30 degrees C during freezing in cryopreservation media. These predicted rates range from 53 degrees C/min to 70 degrees C/min and from 28 degrees C/min to 36 degrees C/min in rat and mouse, respectively. These predictions were validated by comparison to experimentally determined cryopreservation outcomes, in this case based on motility. Maximum motility was obtained with freezing rates between 50 degrees C/min and 80 degrees C/min for rat and at 20 degrees C/min with a sharp drop at 50 degrees C/min for mouse. In summary, DSC experiments on mouse and rat sperm yielded a difference in membrane permeability parameters in the two sperm types that, when implemented in a biophysical model of water transport, reasonably predict different optimal cooling rate outcomes for each sperm after cryopreservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754885PMC
http://dx.doi.org/10.1095/biolreprod.109.076075DOI Listing

Publication Analysis

Top Keywords

degrees c/min
48
c/min degrees
24
mouse sperm
16
rat sperm
16
sperm
13
degrees
13
rat mouse
12
c/min
12
cryopreservation media
12
rat
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!