Since the initial discovery of the endosomal sorting complex required for transport (ESCRT) pathway, research in this field has exploded. ESCRT proteins are part of the endosomal trafficking system and play a crucial role in the biogenesis of multivesicular bodies by functioning in the formation of vesicles that bud away from the cytoplasm. Subsequently, a surprising role for ESCRT proteins was defined in the budding step of some enveloped retroviruses, including HIV-1. ESCRT proteins are also employed in this outward budding process, which results in the resolution of a membranous tether between the host cell and the budding virus particle. Remarkably, it has recently been described that ESCRT proteins also have a role in the topologically equivalent process of cell division. In the same way that viral particles recruit the ESCRT proteins to the site of viral budding, ESCRT proteins are also recruited to the midbody - the site of release of daughter cell from mother cell during cytokinesis. In this Commentary, we describe recent advances in the understanding of ESCRT proteins and how they act to mediate these diverse processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723143 | PMC |
http://dx.doi.org/10.1242/jcs.028308 | DOI Listing |
J Med Virol
February 2025
Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China.
Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, 6-1-2, Kamikitazawa, Setagaya-Ku, Tokyo 113-8613, Japan.
We previously isolated a cDNA clone for galactosylceramide expression factor 1, which is the rat homologue of hepatocyte-growth-factor-regulated tyrosine kinase substrate (HGS) and induces galactosylceramide expression and morphological changes in COS-7 cells, and reported that overexpression of HGS induced morphological changes in canine kidney epithelial MDCK cells. HGS is a component of the endosomal sorting complexes required for transport machinery that mediates endosomal multivesicle body formation. In this study, the overexpression of HGS induced epithelial-mesenchymal transition and caused transformation in MDCK cells, whereas the overexpression of a coiled-coil domain of HGS inhibited induction of epithelial-mesenchymal transition by HGF stimulation.
View Article and Find Full Text PDFTrends Plant Sci
January 2025
University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; University of Applied Sciences Dresden, Pillnitzer Platz 2, 01326 Dresden, Germany. Electronic address:
Recent research indicates an involvement of microautophagy in the uptake of seed storage proteins (SSPs) into the plant-specific protein storage vacuole (PSV), particularly in cereal grains. However, because microautophagy plays a vital role in cellular homeostasis by degrading and recycling cellular components, we question whether it is a suitable term for a process involved in long-term storage. Additionally, because fission-type microautophagy shares mechanistic similarities with the intraluminal vesicle (ILV) formation of multivesicular bodies (MVBs), we draw parallels between microautophagy and membrane remodeling facilitated by the endosomal sorting complex required for transport (ESCRT).
View Article and Find Full Text PDFCell Surf
June 2025
Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
Yeast cell walls contain both classically-secreted and unconventionally-secreted proteins. The latter class lacks the signal sequence for translocation into the ER, therefore these proteins are transported to the wall by uncharacterized mechanisms. One such protein is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which is abundant in the cytosol, but also found in the yeast cell wall where it is enzymatically active.
View Article and Find Full Text PDFAutophagy
January 2025
Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, China.
The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!