Occult cardiotoxicity--toxic effects on cardiac ischemic tolerance.

Toxicol Pathol

Department of Pathology, Shaare Zedek Medical Center, Jerusalem 91031, Israel.

Published: August 2009

The outcome of cardiac ischemic events depends not only on the extent and duration of the ischemic stimulus but also on the myocardial intrinsic tolerance to ischemic injury. Cardiac ischemic tolerance reflects myocardial functional reserves that are not always used when the tissue is appropriately oxygenated. Ischemic tolerance is modulated by ubiquitous signal transduction pathways, transcription factors and cellular enzymes, converging on the mitochondria as the main end effector. Therefore, drugs and toxins affecting these pathways may impair cardiac ischemic tolerance without affecting myocardial integrity or function in oxygenated conditions. Such effect would not be detected by current toxicological studies but would considerably influence the outcome of ischemic events. The authors refer to such effect as "occult cardiotoxicity." In this review, the authors summarize current knowledge about main mechanisms that determine cardiac ischemic tolerance, methods to assess it, and the effects of drugs and toxins on it. The authors offer a view that low cardiac ischemic tolerance is a premorbid status and, therefore, that occult cardiotoxicity is a significant potential source of cardiac morbidity. The authors propose that toxicologic assessment of compounds would include the assessment of their effect on cardiac ischemic tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0192623309339503DOI Listing

Publication Analysis

Top Keywords

cardiac ischemic
28
ischemic tolerance
28
ischemic
11
cardiac
8
tolerance
8
ischemic events
8
drugs toxins
8
occult cardiotoxicity--toxic
4
cardiotoxicity--toxic effects
4
effects cardiac
4

Similar Publications

Background: Cardiovascular disease (CVD) morbidity and mortality is increasing in Africa, largely due to undiagnosed and untreated hypertension. Approaches that leverage existing primary health systems could improve hypertension treatment and reduce CVD, but cost-effectiveness is unknown. We evaluated the cost-effectiveness of population-level hypertension screening and implementation of chronic care clinics across eastern, southern, central, and western Africa.

View Article and Find Full Text PDF

Background: Ischemic heart disease (IHD) has a significant impact on public health and healthcare expenditures in the United States (US).

Methods: We used data from the CDC WONDER database from 1999-2020 to identify trends in the IHD-related mortality of patients ≥ 75 years in the US. AAMRs per 100,000 population and APC were calculated and categorized by year, sex, race, and geographic divisions.

View Article and Find Full Text PDF

Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage.

View Article and Find Full Text PDF

TLR4 Inhibition Attenuated LPS-Induced Proinflammatory Signaling and Cytokine Release in Mouse Hearts and Cardiomyocytes.

Immun Inflamm Dis

January 2025

Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.

View Article and Find Full Text PDF

Background: Pulsed field ablation (PFA) is gaining recognition as a nonthermal, tissue-specific technique for the treatment of atrial fibrillation (AF). The preclinical evaluation of the investigated novel PFA system from Insight Medtech Co. Ltd has demonstrated feasibility, safety, and 30-day efficacy for pulmonary vein isolation (PVI) in the swine model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!