Role of presynaptic kainate receptors at parallel fiber-purkinje cell synapses in induction of cerebellar LTD: interplay with climbing fiber input.

J Neurophysiol

Pharmacologie de la Synapse, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud and Centre National de la Recherche Scientifique, 91405 Orsay Cedex, France.

Published: August 2009

Until recently, except for A1 adenosine, N-methyl-d-aspartate, and cannabinoid receptors, little effort has been made to unravel possible roles of parallel fiber (PF) presynaptic receptors in long-term depression (LTD) of synaptic transmission at PF-Purkinje cell (PC) synapses. Presynaptic kainate (KA) receptors are also present on PFs and might also influence LTD induction by modulating glutamate (Glu) release at PF-PC synapses. This hypothesis was tested by comparing the efficacy of two pairing protocols in inducing LTD in adult wild-type and knock-out mice for the Glu receptor 6 (GluR6) subunit of KA receptors. Activation of presynaptic KA receptors was unnecessary for LTD induction when PF inputs were paired with climbing fiber (CF) stimulation but became crucial when CF input was replaced by direct depolarization of PCs. By comparing basal paired-pulse facilitation of PF-excitatory postsynaptic currents (EPSCs) and depolarization-induced suppression of excitation in adult wild-type and GluR6 knock-out mice, it was shown that the participation of PF presynaptic KA receptors in LTD induction was likely to mainly result from their tonic activation by basal extracellular Glu, rather than from their activation by retrograde release of Glu by PCs during pairing protocols. Finally, this study suggests that, in adult mice, CFs not only participate in LTD induction by depolarizing postsynaptic cells but also by activating postsynaptic mGluR1alpha metabotropic glutamate receptors at CF-PC synapses.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00269.2009DOI Listing

Publication Analysis

Top Keywords

presynaptic receptors
12
presynaptic kainate
8
receptors
8
kainate receptors
8
cell synapses
8
climbing fiber
8
pairing protocols
8
adult wild-type
8
knock-out mice
8
induction
5

Similar Publications

Exploring Serotonin-1A receptor function in the effects of buspirone on cognition by molecular receptor expression and EEG analytical studies.

Eur J Pharmacol

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.

Buspirone, a commonly prescribed medication for generalized anxiety disorder (GAD), is gaining attention for its narrow window of side effects such as lack of physical dependence, non-sedative properties as compared to other anxiolytic drugs. Its dose-specific therapeutic effects beyond anxiety highlights its clinical significance. Pharmacologically, buspirone activates serotonin-1A pre-synaptic autoreceptors and post-synaptic heteroreceptors which modulate serotonergic neurotransmission induced behavioral changes such as anxiolytic and nootropic effects.

View Article and Find Full Text PDF

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.

View Article and Find Full Text PDF

Nonapoptotic caspase-3 guides C1q-dependent synaptic phagocytosis by microglia.

Nat Commun

January 2025

Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.

Caspases are known to mediate neuronal apoptosis during brain development. However, here we show that nonapoptotic activation of caspase-3 at presynapses drives microglial synaptic phagocytosis. Real-time observation and spatiotemporal manipulation of synaptic caspase-3 in the newly established, mouse-derived culture system demonstrate that increased neuronal activity triggers localized presynaptic caspase-3 activation, facilitating synaptic tagging by complements.

View Article and Find Full Text PDF

Synaptic Physiology Depends on Electrical Forces and Liquid-Liquid Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Pre- and post-synaptic events are regulated by liquid-liquid phase separation and this phenomenon requires multiple electrical forces. Both axonal transport and the organization of postsynaptic excitatory and inhibitory receptors are regulated by LLPS, with its mandatory electrical drivers ultimately determining our cognitive health and capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!