Dexterous at small diameters, continuum robots consisting of precurved concentric tubes are well-suited for minimally invasive surgery. These active cannulas are actuated by relative translations and rotations applied at the tube bases, which create bending via elastic tube interaction. An accurate kinematic model of cannula shape is required for applications in surgical and other settings. Previous models are limited to circular tube precurvatures, and neglect torsional deformation in curved sections. Recent generalizations account for arbitrary tube preshaping and bending and torsion throughout the cannula, providing differential equations that define cannula shape. In this paper, we show how to simplify these equations using Frenet-Serret frames. An advantage of this approach is the interpretation of torsional components of the preset tube shapes as "forcing functions" on the cannula's differential equations. We also elucidate a process for numerically solving the differential equations, and use it to produce simulations illustrating the implications of torsional deformation and helical tube shapes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2009.2025135DOI Listing

Publication Analysis

Top Keywords

differential equations
12
cannula shape
8
torsional deformation
8
tube shapes
8
tube
6
parsimonious evaluation
4
evaluation concentric-tube
4
concentric-tube continuum
4
continuum robot
4
robot equilibrium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!