Sonochemical elimination of organic pollutants can take place through two degradation pathways. Molecules with relatively large Henry's law constants will be incinerated inside the cavitation bubble, while nonvolatile molecules with low Henry's law constants will be oxidised by the OH(*) ejected from the bubble of cavitation. Taking bisphenol-A as a model pollutant, this study points out an alternate degradation route, mediated by bicarbonate ions, which is significant for the elimination of micro-pollutants at concentrations present in natural waters. In this process, OH(*) radicals react with bicarbonate ions to produce the carbonate radical, which, unlike the OH(*) radical, can migrate towards the bulk of the solution and therefore induce the degradation of the micro-pollutants present in the bulk solution. As a consequence, initial degradation rate is increased by a factor 3.2 at low concentration of bisphenol-A (0.022 micromol l(-1)) in presence of bicarbonate in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2009.05.010DOI Listing

Publication Analysis

Top Keywords

bicarbonate ions
12
henry's law
8
law constants
8
constants will
8
bulk solution
8
degradation
5
enhanced sonochemical
4
sonochemical degradation
4
degradation bisphenol-a
4
bicarbonate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!