AI Article Synopsis

  • The study aimed to investigate how glycidyl methacrylate (GMA) can cause malignant changes in human bronchial epithelial cells (16HBE).
  • Experiments showed that treatment with GMA led to an increase in transformed cell growth and capability, notably at higher concentrations (especially 8 microg/ml), with significant differences compared to control groups.
  • The transformed cells displayed characteristics of malignancy, like loss of contact inhibition, ability to form colonies in semi-solid media, and tumor formation in mice, suggesting that GMA has potential carcinogenic effects.

Article Abstract

Objective: To study the malignant transformation of human bronchial epithelial cells induced by glycidyl methacrylate (GMA).

Methods: 16HBE cells were treated multiple times with GMA at concentrations of 1, 2, 4 and 8 microg/ml. Cellular biological characteristics of malignant transformation were identified by the tests of conA, colony forming frequency on soft agar, scanning electron microscope and tumorigenesis in nude mice. Test of immunocytochemical detection was also applied to confirm the derivation of cell and tumor. Groups of solvent control (DMSO) and positive control (MCA) were also performed at the same time.

Results: Transformed foci could be observed after the cells were treated by GMA at concentrations from 1 to 8 microg/ml. The number of transformation foci increased with the concentration of GMA. Transforming rate in 8 microg/ml group (8.48 x 10(-6)) was significantly higher (P < 0.01) than that of solvent control group (4.5 x 10(-7)). The transformed cells lost contact inhibition and exhibited a crossover growth in culture dish. They also could grow in semi-solid agar and showed dose-reaction relations with the concentration of GMA. The colony forming frequency in 2, 4 and 8 microg/ml group was 1.20 per thousand, 2.35 per thousand and 5.70 per thousand respectively, which were higher than that of solvent control group (P < 0.01). The transformed cells could be agglutinated by low concentration of conA. Microvilli on the surface of transformed cells increased and became strong and long under scanning electron microscope. The transformed cells could form subcutaneous tumor in nude mice which was diagnosed as squamous cell carcinoma in morphology. Expression of cytokeratin (CK) was detected in both 16HBE cells and tumor formed in nude mice.

Conclusion: GMA could induce the malignant transformation of 16HBE cells. This research system might provide a potential tool and lay a foundation for the study of the molecular mechanism of carcinogenesis induced by GMA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

malignant transformation
16
transformed cells
16
16hbe cells
12
solvent control
12
cells
10
transformation human
8
human bronchial
8
bronchial epithelial
8
epithelial cells
8
cells induced
8

Similar Publications

Cold atmospheric plasma potentiates ferroptosis via EGFR(Y1068)-mediated dual axes on GPX4 among triple negative breast cancer cells.

Int J Biol Sci

January 2025

Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.

Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.

View Article and Find Full Text PDF

The current research revealed a strong link between lipid reprogramming and dysregulated lipid metabolism to the genesis and development of clear cell renal cell carcinoma (ccRCC). Pathologically, ccRCC exhibits a high concentration of lipid droplets within the cytoplasm. HIF-2α expression has previously been demonstrated to be elevated in ccRCC caused by mutations in the von Hippel-Lindau (VHL) gene, which plays a vital role in the development of renal cell carcinoma.

View Article and Find Full Text PDF

Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear.

View Article and Find Full Text PDF

Background: Thymic cysts can be classified as congenital or acquired. Most thymic cysts do not change in size over a short period of time. Although very rare, thymic cyst rupture is associated with serious complications, such as mediastinal hemorrhage and hemothorax.

View Article and Find Full Text PDF

Study on the Transformation Process of Thyroid Fine-Needle Aspiration Liquid-Based Cytology to Whole-Slide Image.

Cytopathology

January 2025

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

Objective: Analyse and summarise the reasons for failure in the digital acquisition of thyroid liquid-based cytology (LBC) slides and the technical challenges, and explore methods to obtain reliable and reproducible whole digital slide images for clinical thyroid cytology.

Method: Use the glass slide scanning imaging system to acquire whole-slide image (WSI) of thyroid LBC in sdpc format through different. Statistical analysis was conducted on the different acquisition methods, the quality of the glass slides, clinical and pathological characteristics of the case, TBSRTC grading and the quality of WSI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!