The glycosylated membrane protein M of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) is the main structural component of the virion and mediates assembly and budding of viral particles. The membrane topology of SARS-CoV M and the functional significance of its N-glycosylation are not completely understood as is its interaction with the surface glycoprotein S. Using biochemical and immunofluorescence analyses we found that M consists of a short glycosylated N-terminal ectodomain, three transmembrane segments and a long, immunogenic C-terminal endodomain. Although the N-glycosylation site of M seems to be highly conserved between group 1 and 3 coronaviruses, studies using a recombinant SARS-CoV expressing a glycosylation-deficient M revealed that N-glycosylation of M neither influence the shape of the virions nor their infectivity in cell culture. Further functional analysis of truncated M proteins showed that the N-terminal 134 amino acids comprising the three transmembrane domains are sufficient to mediate accumulation of M in the Golgi complex and to enforce recruitment of the viral spike protein S to the sites of virus assembly and budding in the ERGIC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705359PMC
http://dx.doi.org/10.1186/1743-422X-6-79DOI Listing

Publication Analysis

Top Keywords

membrane topology
8
membrane protein
8
assembly budding
8
three transmembrane
8
studies membrane
4
n-glycosylation
4
topology n-glycosylation
4
n-glycosylation functionality
4
sars-cov
4
functionality sars-cov
4

Similar Publications

The architectural characteristics of metal-organic frameworks (MOFs) can be examined through their net topology, which consists of nodes and linkers. A node's connectivity and site symmetry are likely the key elements influencing the net topology of MOFs. Metal-organic polyhedra (MOPs) function effectively as nodes when used as supermolecular building blocks (SBBs).

View Article and Find Full Text PDF

Protein catalysis and allostery require the atomic-level orchestration and motion of residues and ligand, solvent and protein effector molecules. However, the ability to design protein activity through precise protein-solvent cooperative interactions has not yet been demonstrated. Here we report the design of 14 membrane receptors that catalyse G protein nucleotide exchange through diverse engineered allosteric pathways mediated by cooperative networks of intraprotein, protein-ligand and -solvent molecule interactions.

View Article and Find Full Text PDF

Role of astrocytes connexins - pannexins in acute brain injury.

Neurotherapeutics

January 2025

Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile. Electronic address:

Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs).

View Article and Find Full Text PDF

Small and Versatile Cyclotides as Anti-infective Agents.

ACS Infect Dis

January 2025

Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil.

Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability.

View Article and Find Full Text PDF

Positively charged cytoplasmic residues in corin prevent signal peptidase cleavage and endoplasmic reticulum retention.

Commun Biol

January 2025

Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China.

Positively charged residues are commonly located near the cytoplasm-membrane interface, which is known as the positive-inside rule in membrane topology. The mechanism underlying the function of these charged residues remains poorly understood. Herein, we studied the function of cytoplasmic residues in corin, a type II transmembrane serine protease in cardiovascular biology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!