Anisotropic polymer-inorganic composite latex particles were synthesized by using a RAFT-based encapsulation approach on cationic gibbsite platelets. By using the RAFT agent dibenzyl trithiocarbonate, a series of amphipatic living random RAFT copolymers with different combinations of acrylic acid and butyl acrylate units were synthesized. These RAFT copolymers were used as living stabilizers for the gibbsite platelets and chain extended to form a polymeric shell by starved feed emulsion polymerization. Cryo-TEM characterization of the resulting composite latexes demonstrates the formation of anisotropic composite latex particles with mostly one platelet per particle. Monomer feed composition, chain length, and hydrophilic-lipophilic balance of the RAFT copolymer were found to be important factors for the overall efficiency of the encapsulation. Good control over platelet orientation and high encapsulation efficiency were achieved via this route.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la9012697DOI Listing

Publication Analysis

Top Keywords

composite latex
12
latex particles
12
anisotropic composite
8
starved feed
8
feed emulsion
8
emulsion polymerization
8
gibbsite platelets
8
raft copolymers
8
polymer encapsulated
4
encapsulated gibbsite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!