Energy metabolism-by means of indirect calorimetry-and kinetic parameters of the protein metabolism on the basis of the 3-compartment model were measured with 4 groups of 4 or 5 male Wistar rats in the growth range of between 70 and 230 g live weight in a total of 5 alternately successive periods at the feeding levels growth and energy maintenance as well as 4 different levels of protein supply (6, 10, 17 and 26% crude protein in the feed). The partial energy requirement values for protein retention (bp) for every animal and every period are calculated from the data of energy metabolism. On an average of the 3 growth periods they amounted to 1.75 +/- 0.37 kJ/kJ. A statistically significant linear relation with a slope of approximately 1 could be derived regressively between the protein synthesis rate and the protein retention rate, including all 5 test periods. There was no proven relation between the bp values and the corresponding individual values of the ratio of protein synthesis rate-diminished by the regressively derived protein synthesis rate in the N balance-to the protein retention rate. The results do not permit proven statements on the quantitative relations between protein turnover and energy requirement for protein retention, which is first of all due to methodical shortcomings in measuring both protein metabolism and energy metabolism. They indicate, however, that the heat production from protein synthesis has only a relatively low share in the additional energy expenditure for protein retention and does not considerably surpass the necessary minimal cost for the synthesis of the deposited protein in growing rats.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17450399109428504DOI Listing

Publication Analysis

Top Keywords

protein retention
24
protein synthesis
20
protein
19
protein metabolism
12
energy metabolism
12
energy requirement
12
synthesis rate
12
energy
9
kinetic parameters
8
parameters protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!