Sense of community (SOC) has been one of the most studied topics in community psychology. However, no empirical study to date has investigated SOC in Hong Kong and its relations with community characteristics and residents' psychological well-being. A representative sample of 941 Hong Kong Chinese based on a randomized household survey was conducted in all 18 districts in Hong Kong. Results of hierarchical linear modeling indicated that SOC was not associated with sociodemographic indicators on both the individual-level (i.e., gender, age, family income, education level, type of residence, and area-to-capita ratio of residence) and the community-level (i.e., proportion of individuals with tertiary education, median family income, ownership of residence, population density, and resident stability). SOC was negatively related to daily hassles and positively with social support and quality of life. Conceptualization of SOC in Hong Kong was discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10464-009-9242-zDOI Listing

Publication Analysis

Top Keywords

hong kong
20
sense community
8
kong relations
8
characteristics residents'
8
soc hong
8
family income
8
hong
5
kong
5
soc
5
community hong
4

Similar Publications

Electrochemically converting nitrate (NO ) to value-added ammonia (NH) is a complex process involving an eight-electron transfer and numerous intermediates, presenting a significant challenge for optimization. A multi-elemental synergy strategy to regulate the local electronic structure at the atomic level is proposed, creating a broad adsorption energy landscape in high-entropy alloy (HEA) catalysts. This approach enables optimal adsorption and desorption of various intermediates, effectively overcoming energy-scaling limitations for efficient NH electrosynthesis.

View Article and Find Full Text PDF

Tailored Polymer-Inorganic Bilayer SEI with Proton Holder Feature for Aqueous Zn Metal Batteries.

Angew Chem Int Ed Engl

January 2025

Harbin Institute of Technology (Shenzhen), Department of Materials Science and Engineering, College Park, Building C, 404, Shenzhen, CHINA.

Conventional SEI in aqueous Zn-ion batteries mainly acts as a physical barrier to prevent HER, which is prone to structural deterioration stemming from uneven Zn deposition at high current densities. Herein, we propose an in-situ structural design of polymer-inorganic bilayer SEI with a proton holder feature by aniline-modulated electrolytes. The inner ZnF2 with high stiffness and strength effectively suppresses Zn dendrites.

View Article and Find Full Text PDF

Observation of Large Low-Field Magnetoresistance in Layered (NdNiO):NdO Films at High Temperatures.

Adv Mater

January 2025

State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.

View Article and Find Full Text PDF

Carbazole-derived self-assembled monolayers (SAMs) are promising materials for hole-extraction layer (HEL) in conventional organic photovoltaics (OPVs). Here, a SAM Cbz-2Ph derived from 3,6-diphenylcarbazole is demonstrated. The large molecular dipole moment of Cbz-2Ph allows the modulation of electrode work function to facilitate hole extraction and maximize photovoltage, thus improving the OPV performance.

View Article and Find Full Text PDF

Gold nanorods coated with self-assembled silk fibroin for improving their biocompatibility and facilitating targeted photothermal-photodynamic cancer therapy.

Nanoscale

January 2025

Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China.

Gold nanorods (AuNRs) have shown great potential as photothermal agents for cancer therapy. However, the biosafety of AuNRs ordinarily synthesized using a cationic ligand assistance procedure has always been a subject of controversy, which limits their application in tumor therapy. In this study, we propose a novel strategy to enhance the biocompatibility of AuNRs by constructing a biological coating derived from silk fibroin (SF) on their surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!