Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bone geometry is an important determinant of bone strength and is influenced by muscle pull and weight-bearing. Muscle mass and exposure to weight-bearing decrease with age and thus the purpose of the study was to compare bone geometry of the weight-bearing (tibia) and non-weight-bearing (fibula) bones of the leg in different age groups. Magnetic resonance images of the right leg were acquired in 13 young (26 yr), 13 old (66 yr), and 13 very old men (83 yr). Cortical, medullary and total cross-sectional areas (CSA) of the bones were measured at approximately one-third and two-thirds the length of the leg. Muscle CSA of the anterior, lateral and posterior compartments was measured at the proximal site. Cortical CSA was approximately 14 to 22% smaller in the elderly in the tibia but similar across age in the fibula. Medullary CSA was larger with age (approximately 5 to 65%) in both bones but approximately 15 to 440% greater in the tibia than fibula. Total CSA was similar across age in both bones. Muscle mass was similar between young and old but approximately 25% less in the very old and as a consequence, the magnitude of differences in bone geometry at proximal and distal sites varied in the two elderly groups. These findings indicate that there is a complex age-dependent interaction between muscle pull and weight-bearing. The greater age-related differences in bone geometry in the tibia suggest the weight-bearing role of the tibia makes it more susceptible than the fibula to the reduced activity typically associated with aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00223-009-9261-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!