Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper describes a new methodology we have developed for the optical simulation of CMOS image sensors. Finite Difference Time Domain (FDTD) software is used to simulate light propagation and diffraction effects throughout the stack of dielectrics layers. With the use of an incoherent summation of plane wave sources and Bloch Periodic Boundary Conditions, this new methodology allows not only the rigorous simulation of a diffuse-like source which reproduces real conditions, but also an important gain of simulation efficiency for 2D or 3D electromagnetic simulations. This paper presents a theoretical demonstration of the methodology as well as simulation results with FDTD software from Lumerical Solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.005494 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!