Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs.

Opt Express

The Aerospace Corporation, 2350 E. El Segundo Blvd. El Segundo, CA 90245, USA.

Published: April 2007

AI Article Synopsis

  • The scaling of integrated circuits necessitates improvements in interconnect technology to reduce delay, energy dissipation, and cross-talk.
  • A comparison is made between traditional metal wire interconnects that use electric charge and plasmons - surface waves on metal - for signal transmission.
  • While surface plasmon waveguides can decrease signal delay, they lead to higher energy dissipation, particularly at high densities where low cross-talk is crucial.

Article Abstract

The continued scaling of integrated circuits will require advances in intra-chip interconnect technology to minimize delay, density of energy dissipation and cross-talk. We present the first quantitative comparison between the performance of metal wire interconnects, operated in the traditional manner by electric charge and discharge, versus the performance of metal wires operated as surface plasmon waveguides. Surface plasmon wire waveguides have the potential to reduce signal delay, but the high confinement required for low cross-talk amongst high density plasmon wire interconnects significantly increases energy dissipation per transmitted bit, above and beyond that required for electric charge/discharge interconnects at the same density.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.004474DOI Listing

Publication Analysis

Top Keywords

energy dissipation
8
performance metal
8
wire interconnects
8
surface plasmon
8
plasmon wire
8
plasmonic interconnects
4
interconnects versus
4
versus conventional
4
interconnects
4
conventional interconnects
4

Similar Publications

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

Bioinspired thermally conducting packaging for heat management of high performance electronic chips.

Commun Eng

January 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.

Conventional electronic chip packaging generates a huge thermal resistance due to the low thermal conductivity of the packaging materials that separate chip dies and coolant. Here we propose and fabricate a closed high-conducting heat chip package based on passive phase change, using silicon carbide which is physically and structurally compatible with chip die materials. Our "chip on vapor chamber" (CoVC) concept realizes rapid diffusion of hot spots, and eliminates the high energy consumption of refrigeration ordinarily required for heat management.

View Article and Find Full Text PDF

Nanofriction plays an important role in the performance and lifetime of n-type or p-type TMD-based semiconductor nanodevices. However, the mechanism of nanofriction in n-type and p-type TMD semiconductors under an electric field is still blurry. In this paper, monolayers of n-MoSe and p-WSe materials were prepared by chemical vapor deposition (CVD), and their nanofriction behavior under positive electric field was investigated.

View Article and Find Full Text PDF

Negative capacitance (NC) effects in ferroelectrics can potentially break fundamental limits of power dissipation known as "Boltzmann tyranny." However, the origin of transient NC of ferroelectrics, which is attributed to two different mechanisms involving free-energy landscape and nucleation, is under intense debate. Here, we report the coexistence of transient NC and an S-shaped anomaly during the switching of ferroelectric hexagonal ferrites capacitor in an RC circuit.

View Article and Find Full Text PDF

An Automated Workflow to Discover the Structure-Stability Relations for Radiation Hard Molecular Semiconductors.

J Am Chem Soc

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.

Article Synopsis
  • Emerging photovoltaics require radiation-hard materials for use in outer space, but predicting their resilience to high-energy radiation is currently a challenge.
  • The research combines lab automation and machine learning to rapidly identify and test over 130 organic hole transport materials, assessing their stability under UVC light exposure.
  • Findings reveal that materials with fused aromatic rings are more stable, while certain chemical groups negatively impact stability, providing valuable insights for future molecular design in creating durable semiconductors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!