Applicability of inverse scattering based imaging procedures can be broadened by developing new approaches exploiting only amplitude data. As a matter of fact, this can open the way to simpler and less expensive measurement set-ups. In this respect, a two-step based procedure for solving electromagnetic nonlinear inverse scattering problems from only amplitude measurements of the total field has been recently proposed [1,2]. However, in these latter both amplitude and phase of the incident field are still required. In this contribution, we show the possibility of achieving this information from the measured amplitude distribution of the incident field on the observation domain. In particular, a three steps imaging technique which exploits only amplitude measurements of the total and incident fields has been developed. The proposed procedure has been tested against benchmark experimental data available in the literature. The obtained results fully confirm the possibility of achieving faithful reconstructions of unknown targets without performing any phase measurements and any approximation on the scattering equations involved in the inverse scattering problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.003804 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!