Selective excitation of graded-index multimode fibers (GI-MMFs) with a single-mode fiber (SMF) has gained increased interest for telecommunication applications. It has been proposed as a way to enhance the transmission bandwidth of GI-MMF links and/or create parallel communication channels over the same GI-MMF. Although the effect of SMF excitation on the transmission bandwidth has been investigated, its impact on the near-field intensity pattern at the output face of the GI-MMF has not been systematically addressed. We have carried out an analysis of the near-field intensity pattern at the output face of silica-based GI-MMFs excited by a radially offset SMF. Simulation results exhibit all of the features displayed by experimental ones. It turns out that differential mode attenuation and delay, full intra-group mode mixing, and small deviations in the refractive index profile of the GI-MMF do not affect the overall shape of the near-field intensity, which is determined by the radial offset of the input SMF. This can be exploited in mode group diversity multiplexing links. The effect of defects in the refractive index profile, such as a central dip or peak, is also examined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.003656 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!