Recently, we have experimentally demonstrated a new form of cross-sectional, coherence-gated fluorescence imaging referred to as SD-FCT ('spectral-domain fluorescence coherence tomography'). Imaging in SD-FCT is accomplished by spectrally detecting self-interference of the spontaneous emission of fluorophores, thereby providing depth-resolved information on the axial positions of fluorescent probes. Here, we present a theoretical investigation of the factors affecting the detected SD-FCT signal through scattering media. An imaging equation for SD-FCT is derived that includes the effects of defocusing, numerical-aperture, and the optical properties of the medium. A comparison between the optical sectioning capabilities of SD-FCT and confocal microscopy is also presented. Our results suggest that coherence gating in fluorescence imaging may provide an improved approach for depth-resolved imaging of fluorescently labeled samples; high axial resolution (a few microns) can be achieved with low numerical apertures (NA<0.09) while maintaining a large depth of field (a few hundreds of microns) in a relatively low scattering medium (6 mean free paths), whereas moderate NA's can be used to enhance depth selectivity in more highly scattering biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.002810DOI Listing

Publication Analysis

Top Keywords

scattering media
8
fluorescence imaging
8
imaging
6
sd-fct
5
image formation
4
fluorescence
4
formation fluorescence
4
fluorescence coherence-gated
4
coherence-gated imaging
4
imaging scattering
4

Similar Publications

In this paper, we report on the measurement of the optical properties (absorption and scattering coefficients) of photoluminescent turbid media using a homemade integrating sphere setup equipped with a tunable monochromatic light source. The hemispherical reflectance and transmission data are analyzed with the radiative transfer equation using a Monte Carlo simulation-based lookup table to obtain the optical properties of the sample. The results are compared with the optical properties received from a classical integrating sphere setup equipped with a broadband white light source.

View Article and Find Full Text PDF

Viral infections and many other dangerous diseases are accompanied by the development of oxidative stress, which is a consequence of an increase in the level of the reactive oxygen species (ROS). In this regard, the search for effective antioxidants remains highly relevant. We tested fullerenol C(OH) in the context of the connection between its self-assembly in aqueous solutions and cell culture media, antiradical activity, UV cytoprotective action, and antiviral activity against international reference strains of influenza virus A(H1N1)pdm09, A(H3N2), and B subtypes in vitro on the MDCK cell line.

View Article and Find Full Text PDF

Microplastic types dominate the effects of bismuth oxide semi-conductor nanoparticles on their transport in saturated quartz sand.

J Hazard Mater

January 2025

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:

The transport of microplastics (MPs) is of great significance due to its potential threat to subsurface systems. The copresence of MPs and semi-conductor nanoparticles is quite common in practical environments (i. e.

View Article and Find Full Text PDF
Article Synopsis
  • Fast radio bursts (FRBs) are brief bursts of radio waves from distant galaxies, and their emission mechanisms are still debated, focusing on processes near a central engine versus shocks at large distances.
  • Researchers measured two scintillation scales for FRB 20221022A, one linked to the Milky Way and the other to its host galaxy, which allowed them to determine the FRB's emission region size to be less than 3 x 10 kilometers.
  • This size contradicts the large-distance model and suggests that the emission likely occurs close to a central compact object, supported by an observed S-shaped polarization angle, indicating a magnetospheric emission process.
View Article and Find Full Text PDF

RAFT Dispersion Polymerization of 2-Hydroxyethyl Methacrylate in Non-polar Media.

Macromolecules

December 2024

Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.

We report the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in -dodecane using a poly(lauryl methacrylate) (PLMA) precursor at 90 °C. This formulation is an example of polymerization-induced self-assembly (PISA), which leads to the formation of a colloidal dispersion of spherical PLMA-PHEMA nanoparticles at 10-20% w/w solids. PISA syntheses involving polar monomers in non-polar media have been previously reported but this particular system offers some unexpected and interesting challenges in terms of both synthesis and characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!