A novel liquid crystal (LC) wavefront corrector with smooth modal influence functions is proposed and realized. The device consists of a thin layer of planar aligned nematic LC sandwiched between a glass plate with a conductive electrode and a plate made of ceramic material with a very high dielectric constant. Control electrodes are positioned on the back side of the ceramic plate, opposite to the LC. The modal character of the response is determined by spreading of the electric field in the ceramic plate. The device implemented is operating in a reflective (mirror) mode; however, similar principles can be used to build a transmissive device. Low cost and simplicity of control make it a good alternative to continuous face-sheet deformable mirrors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.002770 | DOI Listing |
Environ Sci Technol
January 2025
School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.
Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, POSTECH, Pohang, 37673, Republic of Korea.
Liquid crystals (LCs) are widely used as promising stimuli-responsive materials due to their unique combination of liquid and crystalline properties, providing the capability to sense even molecular-scale events and amplify them into macroscopic optical outputs. However, encoding a high level of selectivity to a specific intermolecular event remains a key challenge, leading to prior studies regarding chemically functionalized LC interfaces. Herein, we propose an integrative strategy to significantly advance the design of chemo-responsive LCs through a deep fundamental understanding on the orientational coupling of LCs with new functional molecules, organic ionic plastic crystals (OIs), presented at LC interfaces.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.
View Article and Find Full Text PDFLangmuir
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.
Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!