A core component of all scanning near-field optical microscopy (SNOM) systems is the optical probe, which has evolved greatly but still represents the limiting component for the system. Here, we introduce a new type of optical probe, based on a Fractal Fibre which is a special class of photonic crystal fibre (PCF), to directly address the issue of increasing the optical throughput in SNOM probes. Optical measurements through the Fractal Fibre probes have shown superior power levels to that of conventional SNOM probes. The results presented in this paper suggest that a novel fibre design is critical in order to maximize the potential of the SNOM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.002468 | DOI Listing |
Open Res Eur
January 2025
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125, USA.
The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.
View Article and Find Full Text PDFThis study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
The accumulation of lipids in hepatocytes in nonalcoholic fatty liver disease (NAFLD) leads to an increase in reactive oxygen species and changes in the intracellular microenvironment, while ferroptosis is the result of the accumulation of iron-dependent lipid peroxidation. Studies have shown that ferroptosis plays an important role in the pathogenesis of NAFLD. Herein, we have developed a viscosity-sensitive fluorescence probe PTSO with near-infrared emission and a large Stokes shift, which were achieved by introducing the sulfone group into the dioxothiochromen-malononitrile fluorophore as an electron-withdrawing group.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
A multifunctional near-infrared fluorescent probe (Sycy) is synthesized by the one-step condensation reaction of syringaldehyde and tricyanofuran. Sycy can detect HSO within 150 s in the red wine and sugar samples with a low detection limit of 3.5 μM.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
Ferrous ions (Fe), the primary form of iron in cells, play a crucial role in various biological processes. The presence and absorption of Fe in food has an important impact on human health. Proper dietary intake and iron supplementation are conducive to prevent and treat iron-related diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!