Third-order optical nonlinearities, chi((3)) of GeS(2)-Ga(2)S(3)-AgCl chalcohalide glasses have been studied systematically utilizing the femtosecond time-resolved optical Kerr effect (OKE) technique at 820nm, showing that the value of chi((3)) enhances with increasing atomic ratio of (S+Cl/2)/(Ge+Ga). From the compositional dependence of glass structure by Raman spectra, a strong dependence of chi;(3) upon glass structure has been found, i.e. compared with [Cl(x)S(3-x)Ge(Ga)-Ge(Ga)S(3-x)Cl(x)] ethane-like s.u. as the structural defectiveness, [Ge(Ga)S(4-x)Cl(x)] mixed tetrahedra make greater contribution to the enhancement of chi((3)). The maximum chi
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.002398 | DOI Listing |
Chem Sci
January 2025
Materials Science and Engineering Program, The Graduate School, Florida State University 2005 Levy Ave. Tallahassee FL 32310 USA
Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (LiAlClS) using inexpensive precursors one-step mechanochemical milling.
View Article and Find Full Text PDFSmall
December 2024
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China.
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ (Q = S, Se) and ZnGeP. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps.
View Article and Find Full Text PDFInorg Chem
November 2024
Department of Chemical Engineering, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel.
J Chem Phys
November 2024
Department of Physics, Gebze Institute of Technology, Gebze, Kocaeli 41400, Türkiye.
Machine-learning interatomic potential models based on graph neural network architectures have the potential to make atomistic materials modeling widely accessible due to their computational efficiency, scalability, and broad applicability. The training datasets for many such models are derived from density-functional theory calculations, typically using a semilocal exchange-correlation functional. As a result, long-range interactions such as London dispersion are often missing in these models.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
New Chemistry Unit, and School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!