A high refractive index Te-enriched bulk chalcogenide glass Ge(20)As(20)Se(14)Te(46) (n approximately 3.3) has been patterned by ablation using four- and two-beam interference femto-second laser setups operating at 800 nm. The regular arrays of 0.8 mum diameter and more than 0.8 mum depth holes and/or grooves of typical size of 1x1 mm(2) have been written on the surface of the glass in a time-scale of 1 second with 50 femtosecond pulses. The high photosensitivity of this narrow-gap semiconductor glass to the femtosecond irradiation is ascribed to a free electron absorption typical of metals, which is caused by laser-induced heating of the glass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.002336 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!