Magnetic metamaterials with magnetic-dipole resonances around 1.2-mum wavelength are fabricated using an extremely compact and robust version of two- or three-beam interference lithography for 1D and 2D structures, respectively. Our approach employs a single laser beam at 532- nm wavelength impinging onto a suitably shaped dielectric object (roof-top prism or pyramid) - bringing the complexity of fabricating magnetic metamaterials down to that of evaporating usual dielectric/metallic coatings.The measured optical spectra agree well with theory; the retrieval reveals a negative magnetic permeability. Importantly, the large-scale sample homogeneity is explicitly demonstrated by optical experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.000501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!