New advances in wide-angle cytometry have allowed researchers to obtain micro- and nano-structural information from biological cells. While the complex two-dimensional scattering patterns generated by these devices contain vital information about the structure of a cell, no computational analysis methods have been developed to rapidly extract this information. In this work we demonstrate a multi-agent computational pipeline that is able to extract features from a two-dimensional laser scattering image, cluster these features into spatially distinct regions, and extract a set of parameters relating to the structure of intensity regions within the image. This parameterization can then be used to infer medically relevant properties of the scattering object.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.012720DOI Listing

Publication Analysis

Top Keywords

image parameterization
8
method cytometric
4
cytometric image
4
parameterization advances
4
advances wide-angle
4
wide-angle cytometry
4
cytometry allowed
4
allowed researchers
4
researchers micro-
4
micro- nano-structural
4

Similar Publications

Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g.

View Article and Find Full Text PDF

In the domain of food science, apple grading holds significant research value and application potential. Currently, apple grading predominantly relies on manual methods, which present challenges such as low production efficiency and high subjectivity. This study marks the first integration of advanced computer vision, image processing, and machine learning technologies to design an innovative automated apple grading system.

View Article and Find Full Text PDF

Introduction: Current brain-based visual prostheses pose significant challenges impeding adoption such as the necessarily complex surgeries and occurrence of more substantial side effects due to the sensitivity of the brain. This has led to much effort toward vision restoration being focused on the more approachable part of the brain - the retina. Here we introduce a novel, parameterized simulation platform that enables study of human retinal degeneration and optimization of stimulation strategies.

View Article and Find Full Text PDF

Simulating the cardiac valves is one of the most complex tasks in cardiovascular modeling. As fluid-structure interaction simulations are highly computationally demanding, machine-learning techniques can be considered a good alternative. Nevertheless, it is necessary to design many aortic valve geometries to generate a training set.

View Article and Find Full Text PDF

Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction.

BMC Med Imaging

January 2025

Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Problem: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manmade visual details that are complex to generalize across ultrasound images utilizing distinct techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!