Although transfections are routinely used in the laboratory, the mechanism(s) by which exogenous DNA is transported into the nucleus is poorly understood. By improving our understanding of how vectors circumvent the numerous cellular barriers to gene transfer, more efficient gene delivery methods can be devised. We have begun to design plasmid constructs that enter the nucleus of specific cell types in the absence of cell division, thereby enhancing levels of expression. We have shown that inclusion of specific DNA sequences in plasmid constructs mediates nuclear import both in vitro and in vivo. Here, we use plasmid affinity chromatography, mass spectrometry (MS), and live-cell pulldowns of transfected plasmid constructs to identify protein cofactors that interact in a sequence-specific manner with these DNA nuclear targeting sequences (DTSs). Importin beta(1), importin 7, and the small guanosine triphosphatase Ran all demonstrate DTS-specific interaction in both MS and pull-down assays, consistent with our model of plasmid nuclear import. In addition, knockdown of importin beta(1) with small interfering RNA (siRNA) abrogates plasmid nuclear import, indicating that it is a necessary cofactor. Our discovery that specific karyopherins mediate plasmid nuclear import can be used to design more effective vectors for gene delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835029 | PMC |
http://dx.doi.org/10.1038/mt.2009.127 | DOI Listing |
Int J Mol Sci
December 2024
Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.
How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
Colon cancer remains a significant health burden globally, necessitating deeper investigation. Identification and targeting of prognostic markers can significantly improve the current therapeutic approaches for colon cancer. The differential nuclear transport (import and export) of cellular proteins, plays an important role in tumor progression.
View Article and Find Full Text PDFMolecules
December 2024
Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously "undruggable" genes. Despite this promise, several biological barriers severely limit their clinical efficacy.
View Article and Find Full Text PDFGenes (Basel)
November 2024
School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is mediated by several intricate protein complexes distributed among the four mitochondrial compartments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!