Mechanisms of gender-linked ischemic brain injury.

Restor Neurol Neurosci

Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHS-2, Portland, OR 97239-3098, USA.

Published: August 2009

Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826890PMC
http://dx.doi.org/10.3233/RNN-2009-0467DOI Listing

Publication Analysis

Top Keywords

brain injury
12
ischemic brain
8
sex differences
8
cell death
8
sex
5
mechanisms gender-linked
4
gender-linked ischemic
4
brain
4
injury biological
4
biological sex
4

Similar Publications

Purpose: This study aimed to explore the narratives of people with acquired brain injury (ABI) who participated in the Unmasking Brain Injury project. Through this inquiry, the multifaceted nature of wellbeing after ABI was described in the narratives, which were characterized by identifying facilitators and barriers to overall wellness.

Methods: A mixed-methods approach was utilized for this study.

View Article and Find Full Text PDF

Cortical Neurotransmitters Measured by Magnetic Resonance Spectroscopy Change Following Traumatic Brachial Plexus Injury.

J Brachial Plex Peripher Nerve Inj

January 2025

School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

 GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the brain. In response to injury within the central nervous system, GABA promotes cortical plasticity and represents a potential pharmacological target to improve functional recovery. However, it is unclear how GABA changes in the brain after traumatic brachial plexus injuries (tBPIs) which represents the rationale for this pilot study.

View Article and Find Full Text PDF

Objective: Elevated intracranial pressure (ICP), a common complication in traumatic brain injuries (TBI), can lead to optic nerve sheath diameter (ONSD) enlargement and flow spectrum changes from the internal carotid artery (ICA) to middle cerebral artery (MCA). This study will investigate the use of Cervical-Cerebral Arterial Ultrasound (CCAU) for non-invasive ICP assessment and evaluating the related indices' clinical utility in TBI patients with decompressive craniotomy (DC).

Methods: ONSD and flow spectrum changes were measured within 24 h after DC in 106 patients via ultrasonic ONSD measurement and CCAU, simultaneously.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke causing significant morbidity and mortality. Previously clinical treatments for ICH have largely been based on a single pathophysiological perspective, and there remains a lack of curative interventions. Following the rupture of cerebral blood vessels, blood metabolites activate resident immune cells such as microglia and astrocytes, and infiltrate peripheral immune cells, leading to the release of a series of inflammatory mediators.

View Article and Find Full Text PDF

Introduction: One of the possible treatment options for patient with cognitive dysfunction is cognitive telerehabilitation. Previous systematic reviews on cognitive telerehabilitation have focused on specific disease groups and the analysis of intervention methods did not differentiate between traditional face-to-face cognition treatment and usual care. In this systematic review, we aim to analyze randomized controlled trials (RCTs) that compare telerehabilitation with face-to-face treatment or usual care for improving cognitive function in elderly individuals with cognitive dysfunction or patients with acquired brain injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!