It is important that analytical results, produced to demonstrate compliance with exposure limits are comparable, to ensure controls are monitored to similar standards. Correcting a measurement result of respirable alpha-quartz for the percentage of crystalline material in the calibration dust is good analytical practice and significant changes in the values assigned to calibration materials will affect the interpretation of results by an analyst or occupational hygiene professional. The reissue of the certification for the quartz reference material NIST 1878a in 2005 and differences in comparative values obtained by other work created uncertainty about the values of crystallinity assigned to national calibration dusts for alpha-quartz. Members of an International Organization for Standardization working group for silica measurement ISO/TC146/SC2/WG7 collaborated to investigate the comparability of results by X-ray diffraction (XRD) and to reach a consensus. This paper lists the values recommended by the working group for use with XRD analysis. The values for crystallinity obtained for some of the materials (NIST 1878, Min-U-Sil5 and A9950) were 6-7% lower than the original certification or estimates reported in other comparisons. Crystallinity values obtained by XRD gave a good correlation with BET surface area measurements (r2 = 0.91) but not with mean aerodynamic particle size (r2 = 0.31). Subsamples of two of the materials (A9950 Respirable and Quin 1 Respirable) with smaller particle size distribution than their parent material did not show any significant change in their values for crystallinity, suggesting that the area XRD measurement of these materials within the particle size range collected is more dependent on how the quartz is formed geologically or how it is processed for use. A comparison of results from laboratories using the infrared (IR) and KBr disc method showed that this method is more dependent than XRD on differences in the particle size within the respirable size range, whereas the XRD values were more consistent between the different measurement values obtained on each material. It was not possible to assign a value for percentage purity to each material for users of IR analysis. This work suggests that differences are likely to exist between the results from XRD and IR analysis when measuring 'real' workplace samples and highlights the importance of matching the particle size of the calibration material to the particle size of the workplace dust for measurements of crystalline quartz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annhyg/mep038 | DOI Listing |
Chem Commun (Camb)
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
We designed a SiO@C/MnO composite material with ultrafine particle size using a simple sol-gel method and calcination process. SiO and MnO components produce a mutual suppression effect during the charge/discharge process to mitigate volume expansion and maintain the long-term stability of composite.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, India.
Background: Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.
Objective: This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class- IV drug.
Environ Sci Pollut Res Int
January 2025
Research Centre for Energy, Environment and Technology (CIEMAT), Avda. Complutense, 40, 28040, Madrid, Spain.
As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!