The activation of macrophages through Toll-like receptor (TLR) pathways leads to the production of a broad array of cytokines and mediators that coordinate the immune response. The inflammatory potential of this response can be reduced by compounds, such as prostaglandin E(2), that induce the production of cyclic adenosine monophosphate (cAMP). Through experiments with cAMP analogs and multigene RNA interference (RNAi), we showed that key anti-inflammatory effects of cAMP were mediated specifically by cAMP-dependent protein kinase (PKA). Selective inhibitors of PKA anchoring, time-lapse microscopy, and RNAi screening suggested that differential mechanisms of PKA action existed. We showed a specific role for A kinase-anchoring protein 95 in suppressing the expression of the gene encoding tumor necrosis factor-alpha, which involved phosphorylation of p105 (also known as Nfkb1) by PKA at a site adjacent to the region targeted by inhibitor of nuclear factor kappaB kinases. These data suggest that crosstalk between the TLR4 and cAMP pathways in macrophages can be coordinated through PKA-dependent scaffolds that localize specific pools of the kinase to distinct substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770900 | PMC |
http://dx.doi.org/10.1126/scisignal.2000202 | DOI Listing |
Inflammopharmacology
January 2025
Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India.
Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.
View Article and Find Full Text PDFBioeng Transl Med
January 2025
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University Boston Massachusetts USA.
Immune checkpoint inhibitors (ICIs) represent new therapeutic candidates against glioblastoma multiforme (GBM); however, their efficacy is clinically limited due to both local and systemic immunosuppressive environments. Hence, therapeutic approaches that stimulate local and systemic immune environments can improve the efficacy of ICIs. Here, we report an adoptive cell therapy employing neutrophils (NE) that are activated via surface attachment of drug-free disk-shaped backpacks, termed Cyto-Adhesive Micro-Patches (CAMPs) for treating GBM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!