Oxidative stress contributes to cardiovascular complications of diabetes, in part, by reducing the bioavailability of nitric oxide (NO). We investigated the mechanisms whereby the insulin sensitizer rosiglitazone may ameliorate oxidative stress in the vasculature of spontaneously hypertensive rats (SHR). Nine-week-old SHR were treated by gavage for 7 wk with rosiglitazone (5 mg x kg(-1) x day(-1)) or vehicle control. Treatment of SHR with rosiglitazone lowered systolic blood pressure, reduced fasting plasma insulin and asymmetrical dimethylarginine, and increased insulin sensitivity (when compared with vehicle treatment). In vessel homogenates and serum from rosiglitazone-treated SHR, SOD activity was enhanced, while 8-iso-PGF(2alpha) (lipid peroxidation product) was reduced (when compared with samples from vehicle-treated SHR). Moreover, expression of p22phox (catalytic subunit of NADPH oxidase) as well as nitrotyrosine and superoxide content were all reduced in the aortas of rosiglitazone-treated SHR. In mesenteric vascular beds (MVB) isolated ex vivo from rosiglitazone-treated SHR, NO-dependent vasodilator actions of insulin were improved when compared with MVB from vehicle-treated SHR. Acute pretreatment of MVB from vehicle-treated SHR with apocynin (NADPH oxidase inhibitor) enhanced vasodilator actions of insulin (results comparable to those in MVB from rosiglitazone-treated SHR). In Langendorff heart preparations from rosiglitazone-treated SHR, ischemia/reperfusion injury caused infarcts 40% smaller than in hearts from vehicle-treated SHR. Acute pretreatment of hearts from vehicle-treated SHR with apocynin produced similar results. Finally, rosiglitazone treatment of endothelial cells in primary culture reduced superoxide induced by insulin-resistant conditions. We conclude that rosiglitazone therapy in SHR increases SOD activity and decreases p22phox expression in the vasculature to reduce oxidant stress leading to an improved cardiovascular phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739701 | PMC |
http://dx.doi.org/10.1152/ajpendo.00291.2009 | DOI Listing |
Hypertens Res
March 2011
Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Shandong, China.
Rosiglitazone, an important peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, improves left ventricular (LV) hypertrophy in diet-induced hypercholesterolemic rats. However, the effects and underlying mechanisms of rosiglitazone on myocardial remodeling in spontaneous hypertension rats (SHRs) are unclear. Twenty male 8-week-old SHRs were randomly divided into two groups: one treated with oral saline (n=10) and the other treated with rosiglitazone (5 mgkg(-1)day(-1), n=10).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
September 2009
Dept. of Pharmacology and Human Physiology, Medical School, Univ. of Bari, Policlinico-Piazza G. Cesare, 11, 70124 Bari, Italy.
Oxidative stress contributes to cardiovascular complications of diabetes, in part, by reducing the bioavailability of nitric oxide (NO). We investigated the mechanisms whereby the insulin sensitizer rosiglitazone may ameliorate oxidative stress in the vasculature of spontaneously hypertensive rats (SHR). Nine-week-old SHR were treated by gavage for 7 wk with rosiglitazone (5 mg x kg(-1) x day(-1)) or vehicle control.
View Article and Find Full Text PDFJ Hypertens
March 2008
Department of Physiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Objectives: Vascular insulin resistance plays a crucial pathogenic role in the development of genetic hypertension. However, it is not known whether hypertension-associated myocardial insulin resistance also exists, and whether this is involved in the development of related diseases, such as hypertensive heart failure. The present study aimed to determine whether hypertension-associated myocardial insulin resistance exists, in addition to any underlying mechanism.
View Article and Find Full Text PDFNephron Exp Nephrol
September 2007
Nephrology Division, Department of Nephrology, Assaf Harofeh Medical Center, Zerifin, Israel.
Background/aim: The angiotensin II level is elevated in subjects genetically prone to develop hypertension, triggering renal hypercellularity, cytokine production, and matrix deposition. Angiotensin-converting enzyme inhibition and/or angiotensin II type 1 receptor blockade attenuate renal damage. Rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist possessing antihypertensive and anti-inflammatory properties, was demonstrated to provide better renal protection than angiotensin-converting enzyme inhibitors.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
July 2004
Heart and Kidney Institute, University of Houston, Houston, TX 72204, USA.
In essential hypertension, the defect in renal dopamine (DA) D(1) receptor function is intrinsic to proximal tubules as this phenomenon is also seen in primary proximal tubule cultures from spontaneously hypertensive rats (SHR) and essential hypertensive patients. Previously, a defect was reported in renal D(1) receptor function in obese Zucker rats. In the present study, we sought to determine whether this D(1) receptor dysfunction is intrinsic in these animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!