[Use of mesenchymal stem cells from adult bone marrow for injured tissue repair].

Orv Hetil

Vas Megyei Markusovszky Lajos Altalános és Rehabilitációs Gyógyfürdo Kórház, Egyetemi Oktató Kórház, Baleseti, Helyreállító és Kézsebészeti Osztály, Szombathely.

Published: July 2009

Mesenchymal stem cells are known as being multipotent and exhibit the potential for differentiation into different cells/tissue lineages, including cartilage, bone, adipose tissue, tendon, and ligament. These pluripotent mesenchymal progenitor cells are denoted as stromal or mesenchymal stem cells. Bone marrow contains two main cell types: hematopoietic cells and stromal cells. The stem cells for non hematopoietic tissues are referred as mesenchymal cells because of their ability to differentiate as mesenchymal or stromal cells. Mesenchymal cells are easily obtainable from bone marrow by means of minimally invasive approach and can be expanded in culture and permitted to differentiate into the desired lineage. The differentiation can be reached by the application of bioactive signaling molecules, specific growth factors. The transforming growth factor beta (TGF-beta) superfamily member proteins such as the bone morphogenetic proteins (BMP-s) are the most important factors of chondrogenic and osteogenic differentiation of mesenchymal stem cells. From the series of recently identified factors, BMP 2,4 and 7 may play an important role in chondrogenic and osteogenic differentiation proteins. Little is known, however, about the signaling pathway involved in tenogenesis of mesenchymal stem cells, but there are some encouraging data about fibroblastic differentiation. The success of growth factor therapy needs a delivery system with biomaterials. Mesenchymal stem cells have become promising vehicles for gene therapy, cell therapy and tissue engineering. In present review, authors deal with the experimental investigations and with the clinical application of the adult bone marrow derived mesenchymal stem cells with bioactive molecules, growth factors.

Download full-text PDF

Source
http://dx.doi.org/10.1556/OH.2009.28666DOI Listing

Publication Analysis

Top Keywords

stem cells
32
mesenchymal stem
28
bone marrow
16
cells
14
mesenchymal
10
stem
8
adult bone
8
stromal cells
8
mesenchymal cells
8
growth factors
8

Similar Publications

Donor-specific antibodies (DSAs) are essential causes of graft rejection in haploidentical hematopoietic stem cell transplantation (haplo-HSCT). DSAs are unavoidable for some patients who have no alternative donor. Effective interventions to reduce DSAs are still needed, and the cost of the current therapies is relatively high.

View Article and Find Full Text PDF

Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles.

Cell Transplant

January 2025

Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China.

Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs).

View Article and Find Full Text PDF

Cell therapy: A beacon of hope in the battle against pulmonary fibrosis.

FASEB J

January 2025

Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative.

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!