A plethora of ubiquitin ligases determine the intracellular location and fate of numerous proteins in a substrate-specific manner. However, the mechanisms for these functions are incompletely understood. Most ligases have structurally related RING domains that are critical for ligase activity including the recruitment of ubiquitin conjugating enzymes. Here we probe the function of the RING-CH domain of murine gamma-herpesvirus-68 ligase mK3 that functions as an immune evasin by targeting major histocompatibility complex (MHC) class I heavy chains for endoplasmic reticulum-associated degradation (ERAD). Interestingly, mK3 mediates ubiquitin conjugation via ester bonds to S or T residues in addition to conventional isopeptide linkages to K residues. To determine the mechanism of non-K ubiquitination of substrates, we introduced into an mK3 background the RING-CH domains of related viral and cellular MARCH (membrane associated RING-CH) ligases. We found that although a conserved W present in all viral RING-CH domains is critical for mK3 function, sequences outside the RING-CH domain determine whether and which non-lysine substrate residues can be ubiquitinated by mK3. Our findings support the model that viral ligases have evolved a highly effective strategy to optimally orient their RING domain with substrate allowing them to ubiquitinate non-K residues.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0854.2009.00946.xDOI Listing

Publication Analysis

Top Keywords

ring-ch domain
12
ligase mk3
8
domains critical
8
ring-ch domains
8
mk3
6
residues
5
ring-ch
5
role ring-ch
4
domain
4
viral
4

Similar Publications

Modulation of Lymphotoxin β Surface Expression by Kaposi's Sarcoma-Associated Herpesvirus K3 Through Glycosylation Interference.

J Med Virol

January 2025

Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Kaposi's sarcoma-associated herpesvirus (KSHV) employs diverse mechanisms to subvert host immune responses, contributing to its infection and pathogenicity. As an immune evasion strategy, KSHV encodes the Membrane-Associated RING-CH (MARCH)-family E3 ligases, K3, and K5, which target and remove several immune regulators from the cell surface. In this study, we investigate the impact of K3 and K5 on lymphotoxin receptor (LTβR) ligands, LTβ and LIGHT, which are type II transmembrane proteins and function as pivotal immune mediators during virus infection.

View Article and Find Full Text PDF

Molecular depiction and functional delineation of E3 ubiquitin ligase MARCH5 in yellowtail clownfish (Amphiprion clarkii).

Dev Comp Immunol

January 2025

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea. Electronic address:

Membrane-associated Ring-CH 5 (MARCH5) is a mitochondrial E3 ubiquitin ligase playing a key role in the regulation of mitochondrial dynamics. In mammals, MARCH5 negatively regulates mitochondrial antiviral signaling (MAVS) protein aggregation during viral infection and hampers downstream type I interferon signaling to prevent excessive immune activation. However, its precise functional role in the teleost immune system remains unclear.

View Article and Find Full Text PDF

NLRP12 inhibits PRRSV-2 replication by promoting GP2a degradation via MARCH8.

Vet Microbiol

November 2024

Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China. Electronic address:

NLRP12, a member of the NLR family, has been shown to exert a vital function in orchestrating immune responses. Here, using the immunosuppressive porcine reproductive and respiratory syndrome virus (PRRSV) as a model, the role of NLRP12 in virus infection was deciphered. We demonstrated that overexpression of NLRP12 significantly restrained PRRSV replication, while NLRP12 silencing resulted in increased viral titer.

View Article and Find Full Text PDF

Macrophage autophagy protects against acute kidney injury by inhibiting renal inflammation through the degradation of TARM1.

Autophagy

January 2025

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.

Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency () exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80 macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion.

View Article and Find Full Text PDF

Gene expression and alternative splicing analysis in a large-scale Multiple Sclerosis study.

medRxiv

August 2024

Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America.

Background: Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease affecting approximately 3 million people globally. Despite rigorous research on MS, aspects of its development and progression remain unclear. Understanding molecular mechanisms underlying MS is crucial to providing insights into disease pathways, identifying potential biomarkers for early diagnosis, and revealing novel therapeutic targets for improved patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!