We report on evaporation studies on positively charged water clusters (H(+)(H(2)O)(N)) and negatively charged mixed clusters (X(-)(H(2)O)(N)) with a small core ion X (X=O(2), CO(3), or NO(3)), in the size range N=5-300. The clusters were produced by corona discharge in ambient air, accelerated to 50 keV and mass selected by an electromagnet. The loss of monomers during the subsequent 3.4 m free flight was recorded. The average losses are proportional to the clusters' heat capacities and this allowed the determination of size-dependent heat capacities. The values are found to increase almost linearly with clusters size for both species, with a rate of 6k(B)-8k(B) per added molecule. For clusters with N<21 the heat capacities per molecule are lower but the incremental increase higher. For N>21 the values are intermediate between the bulk liquid and the solid water 0 degrees C values.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3149784DOI Listing

Publication Analysis

Top Keywords

heat capacities
12
charged water
8
water clusters
8
clusters
6
capacities freely
4
freely evaporating
4
evaporating charged
4
clusters report
4
report evaporation
4
evaporation studies
4

Similar Publications

Stress resilience in plants: the complex interplay between heat stress memory and resetting.

New Phytol

January 2025

Institute of Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, Leiden, 2333 BE, the Netherlands.

Heat stress (HS) poses a major challenge to plants and agriculture, especially during climate change-induced heatwaves. Plants have evolved mechanisms to combat HS and remember past stress. This memory involves lasting changes in specific stress responses, enabling plants to better anticipate and react to future heat events.

View Article and Find Full Text PDF

Morels ( spp.), as one of the rare macroascomycetes that can be cultivated artificially, possess significant economic and scientific values. Morel cultivation is highly sensitive to elevated temperatures; however, the mechanisms of their response to heat shock remain poorly understood.

View Article and Find Full Text PDF

Heat Tolerance Differences Between Hu Sheep and Hu Crossbred Sheep in Microbial Community Structure and Metabolism.

Metabolites

January 2025

Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China.

Background: The frequent occurrence of extreme temperature events causes significant economic losses to the livestock industry. Therefore, delving into the differences in the physiological and molecular mechanisms of heat stress across different sheep breeds is crucial for developing effective management and breeding strategies.

Methods: This study explores the differences in heat tolerance mechanisms between Hu sheep and Xinggao sheep by comparing their growth performance under normal and heat stress conditions, as well as examining the differences in physiological, biochemical, and antioxidant indicators related to heat tolerance, serum metabolomics, and gut microbiomics in a heat stress environment.

View Article and Find Full Text PDF

Chemical and Sensory Evaluation of Blackberry ( sp.) Juice Concentrated by Reverse Osmosis and Osmotic Evaporation.

Membranes (Basel)

January 2025

Embrapa Food Technology-Av. das Américas, 29501, Rio de Janeiro 23020-470, RJ, Brazil.

Blackberry can be considered a source of phenolic compounds with antioxidant properties, especially anthocyanins, which are responsible for the attractive color of the juice. However, blackberry juice quality can be reduced under severe heat treatments, resulting in darkened color and altered taste. Membrane separation processes are an alternative for the clarification and concentration of fruit juices, with advantages as the maintenance of the nutritional, sensory, and functional characteristics of the product.

View Article and Find Full Text PDF

The absorption refrigeration system (ARS) stands as a remarkable device that is capable of efficiently harnessing low-grade thermal energy and converting it into cooling capacity. The reverse electrodialysis (RED) system harvests the salinity gradient energy embedded in two solutions of different concentrations into electricity. An innovative RED-ARS integration system is proposed that outputs cooling capacity and electric energy, driven by waste heat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!