We developed the first model for predicting community structure in mixed-culture fermentative biohydrogen production using electron flows and NADH2 balances. A key assumption of the model is that H2 is produced only via the pyruvate decarboxylation-ferredoxin-hydrogenase pathway, which is commonly the case for fermentation by Clostridium and Ethanoligenens species. We experimentally tested the model using clone libraries to gauge community structures with mixed cultures in which we did not pre-select for specific bacterial groups, such as spore-formers. For experiments having final pHs 3.5 and 4.0, where H2 yield and soluble end-product distribution were distinctly different, we established stoichiometric reactions for each condition by using experimentally determined electron equivalent balances. The error in electron balancing was only 3% at final pH 3.5, in which butyrate and acetate were dominant organic products and the H2 yield was 2.1 mol H2/mol glucose. Clone-library analysis showed that clones affiliated with Clostridium sp. BL-22 and Clostridium sp. HPB-16 were dominant at final pH 3.5. For final pH 4.0, the H2 yield was 0.9 mol H2/mol glucose, ethanol, and acetate were the dominant organic products, and the electron balance error was 13%. The significant error indicates that a second pathway for H2 generation was active. The most abundant clones were affiliated with Klebsiella pneumoniae, which uses the formate-cleavage pathway for H2 production. Thus, the clone-library analyses confirmed that the model predictions for when the pyruvate decarboxylation-ferredoxin-hydrogenase pathway was (final pH 3.5) or was not (final pH 4.0) dominant. With the electron-flow model, we can easily assess the main mechanisms for H2 formation and the dominant H2-producing bacteria in mixed-culture fermentative bioH2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.22442DOI Listing

Publication Analysis

Top Keywords

mixed-culture fermentative
12
electron-flow model
8
fermentative bioh2
8
pyruvate decarboxylation-ferredoxin-hydrogenase
8
decarboxylation-ferredoxin-hydrogenase pathway
8
acetate dominant
8
dominant organic
8
organic products
8
yield mol
8
mol h2/mol
8

Similar Publications

A highly efficient mixed strain fermentation strategy to produce 11α-Hydroxyandrost-4-ene-3,17-dione from phytosterols.

J Biotechnol

January 2025

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China. Electronic address:

11α-Hydroxyandrost-4-ene-3,17-dione (11α-OH AD) is an essential steroid hormone drug intermediate that exhibits low biotransformation efficiency. In this study, a mixed-strain fermentation strategy was established for the efficient production of 11α-OH AD from phytosterols (PS). Initially, strains were screened for efficient transformation of AD to produce 11α-OH AD.

View Article and Find Full Text PDF

There is growing interest in low-temperature food processing. In the baking industry, low-temperature fermentation improves the production of natural aroma compounds, which have a positive impact on the sensory profile of the final product. The aim of this study was to develop a yeast-lactic acid bacteria starter culture that effectively ferments wheat dough at a temperature of 15 °C.

View Article and Find Full Text PDF

Dissecting Interactions of and to Shape Kiwifruit Wine Flavor.

Foods

December 2024

Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China.

Mixed fermentation with and has been shown to enhance wine aroma, yet the underlying mechanisms remain unclear. Monoculture of , monoculture of , and mixed culture of and were conducted, and the study analyzed and compared the biomass, flavor profile, and transcriptome responses of the three groups. Both yeast species exhibited growth inhibition in mixed culture, especially .

View Article and Find Full Text PDF

Optimization of Tratt pomace fermentation process and the effects of mono- and mixed culture fermentation on its chemical composition.

Front Nutr

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.

Background: Tratt pomace (RRTP) contains valuable components like polyphenols and polysaccharides, which have high utilization value. Fermentation is an effective technique for creating beneficial nutrients that can improve the taste, appearance, and nutritional benefits of foods. Nevertheless, there is a lack of research on the alterations in chemical composition of RRTP during fermentation.

View Article and Find Full Text PDF

We successfully enhanced bacterial cellulose (BC) production in low-cost coconut water (CW) at 37 °C by low-nutrient adaptation of Komagataeibacter xylinus MSKU 12. In this study, the BC yield was significantly increased by simultaneous coculture fermentation of MSKU 12 with Saccharomyces bayanus in Hestrin-Schramm (HS) and CW media. Coculture fermentation at 30 °C produced BC yields of 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!