Tunable generation of Bessel beams with a fluidic axicon.

Appl Phys Lett

Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA.

Published: June 2008

This paper describes a tunable fluidic conical lens, or axicon, for the generation and dynamic reconfiguration of Bessel beams. When illuminated with a Gaussian laser beam, our fluidic axicon generates a diverging beam with an annular cross section. By varying the refractive index of the solution that fills our device, we can vary easily the spatial properties of the resulting Bessel beam.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682746PMC
http://dx.doi.org/10.1063/1.2952833DOI Listing

Publication Analysis

Top Keywords

bessel beams
8
fluidic axicon
8
tunable generation
4
generation bessel
4
beams fluidic
4
axicon paper
4
paper describes
4
describes tunable
4
tunable fluidic
4
fluidic conical
4

Similar Publications

Analytical solutions for acoustic vortex beams radiated by sources with uniform circular amplitude distributions are derived in the paraxial approximation. Evaluation of the Fresnel diffraction integral in the far field of an unfocused source and in the focal plane of a focused source leads to solutions in terms of an infinite series of Bessel functions for orbital numbers ℓ>-2. These solutions are reduced to closed forms for 0≤ℓ≤4, which correspond to orbital numbers commonly used in experiments.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Aberration calculation of microlens array using differential algebraic method.

Ultramicroscopy

November 2024

Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China. Electronic address:

Microlens array (MLA), through which all the sub-beams are focused, is widely used in multi-electron-beam systems. In this work, based on the differential algebraic (DA) method, we propose an approach in calculating the high-order aberrations for both axial and off-axial microlenses, considering the multipole fields that are introduced by the neighborhood structures in MLA, as well as the rotationally symmetric field. To perform the DA calculation, the electric fields of the microlenses are analyzed by using the azimuthal Fourier analysis and the Fourier-Bessel series Expansion.

View Article and Find Full Text PDF

Manufacturing Anti-Reflective Subwavelength Structures on ZnS Using Femtosecond Laser Bessel Beam with Burst Mode.

Biomimetics (Basel)

October 2024

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.

Increasing the transmittance of zinc sulfide (ZnS) infrared windows can effectively improve the imaging quality of infrared detection. In this study, an anti-reflective subwavelength structure (ASS) was manufactured on ZnS using a femtosecond burst Bessel laser with the goal of achieving high transmittance in the mid-infrared range. The period and depth parameters of the ASS were initially determined using the effective medium approximation (EMA) theory and subsequently optimized using the rigorous coupled-wave analysis (RCWA) method to eliminate surface Fresnel anti-reflections.

View Article and Find Full Text PDF

Three-dimensional Stacking of Phase Plates for Advanced Electron Beam Shaping.

Microsc Microanal

November 2024

Istituto Nanoscienze, Consiglio Nazionale delle Ricerche, via G. Campi 213/A, Modena 41125, Italy.

Tuneable phase plates for free electrons are a highly active area of research. However, their widespread implementation, similar to that of spatial light modulators in light optics, has been hindered by both conceptual and technical challenges. A specific technical challenge involves the need to minimize obstruction of the electron beam by supporting films and electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!