Many stress responsive genes have been reported with an effect on improving stress resistance in model plants under greenhouse conditions. Towards identification of genes for drought resistance breeding, seven well documented genes (CBF3, SOS2, NCED2, NPK1, LOS5, ZAT10, and NHX1) in stress resistance were selected in this study and transformed into rice cultivar Zhonghua 11 under the control of constitutive promoter Actin1 and stress-inducible promoter of a rice HVA22 homolog, and transgenic rice were tested for drought resistance under field conditions. A total of 1598 independent transgenic T0 plants were generated. The percentages of single copy and expression of the transgenes were 36.7% and 57.6%, respectively. For each gene construct, 30 T1 families with expression of transgene were selected for drought resistance testing at the reproductive stage in field, and 10 of them were tested in PVC pipes with a defined stress protocol at the same stage. Relative yield and relative spikelet fertility were used as two major criteria to evaluate drought resistance performance because significantly decreased yield was observed in the T1 generation. Transgenic families of eight constructs (HVA22P:CBF3, HVA22P:NPK1, Actin1:LOS5, HVA22P:LOS5, Actin1:ZAT10, HVA22P:ZAT10, Actin1:NHX1, and HVA22P:NHX1) showed significantly higher RY than wild-type (WT) under both drought stress field and PVC tube conditions. Transgenic families of 9 constructs (HVA22P:SOS2 and CBF3, LOS5, ZAT10, and NHX1 by both promoters) showed significantly higher relative spikelet fertility than WT in the field or PVC pipes. In the field drought resistance testing of T2 families derived from the T1 families with relatively lower yield decrease, transgenic families of seven constructs (HVA22P:CBF3, Actin1:NPK1, HVA22P:NPK1, Actin1:LOS5, HVA22P:LOS5, Actin1:ZAT10, and HVA22P:ZAT10) showed significantly higher yield per plant than WT, and families of nine constructs (Actin1:CBF3, HVA22P:CBF3, HVA22P:SOS2, HVA22P:NPK1, Actin1:LOS5, HVA22P:LOS5, Actin1:ZAT10, HVA22P:ZAT10, and Actin1:NHX1) had higher spikelet fertility than WT. In general, LOS5 and ZAT10 showed relatively better effect than the other five genes in improving drought resistance of transgenic rice under field conditions. The results and experience obtained from this study could be a useful reference for drought resistance engineering in rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639742 | PMC |
http://dx.doi.org/10.1093/mp/ssn068 | DOI Listing |
BMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFPLoS One
January 2025
Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Canada.
Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.
Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India.
J Genet Genomics
December 2024
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!