Background: Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection.
Methods And Findings: We focused on T cells directed to two epitopes in TB10.4; the MHC class I restricted epitope TB10.4 (3-11) (CD8/10.4 T cells) and the MHC class II restricted epitope TB10.4 (74-88) (CD4/10.4 T cells). CD4/10.4 and CD8/10.4 T cells displayed marked differences in terms of expansion and contraction in a mouse TB model. CD4/10.4 T cells dominated in the early phase of infection whereas CD8/10.4 T cells were expanded after week 16 and reached 5-8 fold higher numbers in the late phase of infection. In the early phase of infection both CD4/10.4 and CD8/10.4 T cells were characterized by 20-25% polyfunctional cells (IL-2(+), IFN-gamma(+), TNF-alpha(+)), but whereas the majority of CD4/10.4 T cells were maintained as polyfunctional T cells throughout infection, CD8/10.4 T cells differentiated almost exclusively into effector cells (IFN-gamma(+), TNF-alpha(+)). Both CD4/10.4 and CD8/10.4 T cells exhibited cytotoxicity in vivo in the early phase of infection, but whereas CD4/10.4 cell mediated cytotoxicity waned during the infection, CD8/10.4 T cells exhibited increasing cytotoxic potential throughout the infection.
Conclusions/significance: Our results show that CD4 and CD8 T cells directed to epitopes in the same antigen differ both in their kinetics and functional characteristics throughout an infection with M. tuberculosis. In addition, the observed strong expansion of CD8 T cells in the late stages of infection could have implications for the development of post exposure vaccines against latent TB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691482 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005928 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!