We demonstrate ultrasmall five-port channel drop filters (CDFs) based on a two-dimensional photonic crystal slab. We combine seven photonic crystals with different lattice constants and use light reflections at the different photonic crystal boundaries to control the interference process and achieve a high dropping efficiency. We operate the CDFs in two modes; one requires careful control of the interference process, whereas the other does not. The former can output a narrower signal spectrum than the latter, and CDF design is easier with the latter. Both CDFs achieve a high dropping efficiency and can function in the CL-band.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.012394DOI Listing

Publication Analysis

Top Keywords

photonic crystal
12
channel drop
8
two-dimensional photonic
8
control interference
8
interference process
8
achieve high
8
high dropping
8
dropping efficiency
8
ultrasmall multi-port
4
multi-port channel
4

Similar Publications

Motion-less depth-selective optogenetic probe using tapered fiber and an electrically tuneable liquid crystal steering element.

Biomed Opt Express

January 2025

Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.

A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.

View Article and Find Full Text PDF

Biocomposites of 2D layered materials.

Nanoscale Horiz

January 2025

Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.

View Article and Find Full Text PDF

We present, for the first time, to our knowledge, power splitters with multiple channel configurations in one-dimensional grating waveguides (1DGWs) that maintain crystal lattice-sensitive Bloch mode profiles without perturbation across all output channels, all within an ultra-miniaturized footprint of just 2.1 × 2.2 μm.

View Article and Find Full Text PDF

Topological interface states (TISs), known for their distinctive capabilities in manipulating electromagnetic waves, have attracted significant interest. However, in conventional all-dielectric one-dimensional photonic crystal (1DPC) heterostructures, TISs strongly depend on incident angle, which limits their practical applications. Here, we realize an angle-independent TIS in 1DPC heterostructures containing hyperbolic metamaterials (HMMs) for transverse magnetic polarized waves.

View Article and Find Full Text PDF

Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!