Based on the results of a fully vectorial finite-difference analysis, we identify three important regimes of field-profile and dispersion management of photonic-crystal fibers with a solid core modified by arrays of nanosize air-hole defects. In the first regime, very small air holes act as weak perturbations, slightly modifying the field profiles of fiber modes and red-shifting the wavelength of zero group-velocity dispersion (GVD). In the second regime, larger holes reduce the effective mode area, tightening the confinement of the light field in the fiber core and blue-shifting the zero- GVD wavelength. Finally, in the third regime, the nanosize air-hole defects with diameters above a critical value induce a phase-transition-type behavior of mode field profiles, dramatically reducing the localization of the field in the fiber core and increasing the radiation power in the fiber cladding. This phase transition in mode field profiles qualitatively modifies the wavelength dependence of the effective mode area and dispersion parameters of fiber modes, especially in the long-wavelength range, suggesting an attractive strategy for fiber dispersion and mode area engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.010878DOI Listing

Publication Analysis

Top Keywords

field profiles
16
mode field
12
nanosize air-hole
12
air-hole defects
12
mode area
12
photonic-crystal fibers
8
arrays nanosize
8
fiber modes
8
effective mode
8
field fiber
8

Similar Publications

The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.

View Article and Find Full Text PDF

Trends in nanobody radiotheranostics.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.

As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis.

View Article and Find Full Text PDF

In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.

View Article and Find Full Text PDF

Microfluidic fractionation of microplastics, bacteria and microalgae with induced-charge electro-osmotic eddies.

Anal Chim Acta

February 2025

School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China. Electronic address:

Background: Fractionation of microalgal cells has important applications in producing pharmaceuticals and treating diseases. Multiple types of microalgal cells generally coexist in the oceans or lakes and are easily contaminated by microplastics and bacteria. Therefore, it is of paramount significance to develop an effective fractionation approach for microalgal cells for biological applications.

View Article and Find Full Text PDF

Composition-dependent MRM transitions and structure-indicative elution segments (CMTSES)-based LC-MS strategy for disaccharide profiling and isomer differentiation.

Anal Chim Acta

February 2025

Faculty of Chinese Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China. Electronic address:

Background: Carbohydrates exhibit diverse functions and extensive biological activities and are notable in the field of life sciences. However, their inherent diversity and complexity-steaming from variations in isomeric monomers, glycosidic bonds, configurations, etc.-present considerable challenges in structural analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!