We present a compact design for an integrated interconnect based on a hybrid imaging setup combining microchannel and conventional imaging. Within this setup the conventional imaging is performed by an aluminum-coated spherical lens. The aberrations introduced by this spherical mirror to the channels of the interconnect can be compensated by channel-wise adapted microlenses located at the in- and output interfaces. These microlenses are used for collimating or refocusing the beams, respectively. Within this paper we present the design of the microlens array with individually shaped lenses referred to as chirped mircolens array (cMLA) based on numerical optimization and the use of fitting functions. Further on we focus on the fabrication of the chirped microlens arrays by laser lithography and first experimental results of coupling efficiencies of singlemode as well as multimode fibers for the realized prototypes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.010765DOI Listing

Publication Analysis

Top Keywords

chirped microlens
8
microlens arrays
8
imaging setup
8
conventional imaging
8
integrated free-space
4
free-space optical
4
optical interconnect
4
interconnect fabricated
4
fabricated planar
4
planar optics
4

Similar Publications

To fully utilize the functions of a center-wavelength-sweeping pulse train generated by a free-space angular-chirp-enhanced delay optical layout for a probe laser pulse in sequentially timed all-optical mapping photography (STAMP), we introduced an integral field spectroscopy (IFS) method using a microlens array (MLA) to produce hyperspectral images, referring to the technique as lens array (LA)-STAMP. Compared with the previous STAMP utilizing spectral filtering where a bandpass filter generated hyperspectral images, LA-STAMP achieved much higher optical throughput. In a prototype setup, we used a 60×60 MLA and demonstrated single-shot burst imaging of a femtosecond laser-induced ablation process on a glass surface with 300 ps frame intervals in a 1.

View Article and Find Full Text PDF

We report on the coherent beam combining of 61 femtosecond fiber chirped-pulse amplifiers in a tiled-aperture configuration along with an interferometric phase measurement technique. Relying on coherent beam recombination in the far field, this technique appears suitable for the combination of a large number of fiber amplifiers. The 61 output beams are stacked in a hexagonal arrangement and collimated through a high fill factor hexagonal micro-lens array.

View Article and Find Full Text PDF

Lens array arrangements are commonly used for the homogenization of highly coherent laser beams. These fly's eye condenser configurations can be used to shape almost arbitrary input intensity distributions into a top hat. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity.

View Article and Find Full Text PDF

We present a compact design for an integrated interconnect based on a hybrid imaging setup combining microchannel and conventional imaging. Within this setup the conventional imaging is performed by an aluminum-coated spherical lens. The aberrations introduced by this spherical mirror to the channels of the interconnect can be compensated by channel-wise adapted microlenses located at the in- and output interfaces.

View Article and Find Full Text PDF

Improvements of the resolution homogeneity of an ultra-thin artificial apposition compound eye objective are accomplished by the use of a chirped array of ellipsoidal micro-lenses. The array contains 130x130 individually shaped ellipsoidal lenses for channel-wise correction of astigmastism and field curvature occurring under oblique incidence. We present an analytical approach for designing anamorphic micro-lenses for such purpose based on Gullstrands equations and experimentally validate the improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!