Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD.

Opt Express

Department of Electrical Engineering, Princeton University, Princeton, NJ 08540, USA.

Published: October 2006

A novel re-timing, re-amplifying, and re-shaping (3R) regeneration system is proposed to process multiple WDM (wavelengthdivision-multiplexing) channels simultaneously. Its re-timing capability is investigated by both simulation and experiment with polarizationscrambling method at 10 Gb/s bit rate. Jitter tolerance up to 0.8 UIpp is demonstrated with BER improvement and floor breaking ability.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.010339DOI Listing

Publication Analysis

Top Keywords

simultaneous all-optical
4
all-optical regeneration
4
regeneration scheme
4
scheme improved
4
improved scalability
4
scalability toad
4
toad novel
4
novel re-timing
4
re-timing re-amplifying
4
re-amplifying re-shaping
4

Similar Publications

Theoretical basis of all-optical modulation of a probe laser beam due to photothermal modulation of the aggregation state in organic dyes, with experimental proof of the principle.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Anhembi Morumbi University (UAM), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil; Center of Innovation, Technology and Education (CITE), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil. Electronic address:

The inherent potential for self-assembly is a well-known attribute of organic dye molecules. This work takes advantage of the changes in dye photochemical and photophysical properties produced by the aggregation phenomenon, to investigate the behavior of all-optical modulation in molecular aggregates. The theoretical principles for a dual beam all-optical modulation, as well as the conception of an optical logic gate by exploring the aggregation phenomenon are discussed throughout the article.

View Article and Find Full Text PDF

All dielectric metasurface based diffractive neural networks for 1-bit adder.

Nanophotonics

April 2024

Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing, 100048, China.

Diffractive deep neural networks ( ) have brought significant changes in many fields, motivating the development of diverse optical computing components. However, a crucial downside in the optical computing components is employing diffractive optical elements (DOEs) which were fabricated using commercial 3D printers. DOEs simultaneously suffer from the challenges posed by high-order diffraction and low spatial utilization since the size of individual neuron is comparable to the wavelength scale.

View Article and Find Full Text PDF

Leveraging multiplexed metasurfaces for multi-task learning with all-optical diffractive processors.

Nanophotonics

November 2024

Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, 27695, USA.

Diffractive Neural Networks (DNNs) leverage the power of light to enhance computational performance in machine learning, offering a pathway to high-speed, low-energy, and large-scale neural information processing. However, most existing DNN architectures are optimized for single tasks and thus lack the flexibility required for the simultaneous execution of multiple tasks within a unified artificial intelligence platform. In this work, we utilize the polarization and wavelength degrees of freedom of light to achieve optical multi-task identification using the MNIST, FMNIST, and KMNIST datasets.

View Article and Find Full Text PDF

All-optical mapping of Ca transport and homeostasis in dendrites.

Cell Calcium

January 2025

Department of Chemistry, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA. Electronic address:

Calcium mediates many important signals in dendrites. However, the basic transport properties of calcium in dendrites have been difficult to measure: how far and how fast does a local influx of calcium propagate? We developed an all-optical system for simultaneous targeted Ca import and Ca concentration mapping. We co-expressed a blue light-activated calcium selective channelrhodopsin, CapChR2, with a far-red calcium sensor, FR-GECO1c, in cultured rat hippocampal neurons, and used patterned optogenetic stimulation to introduce calcium into cells with user-defined patterns of space and time.

View Article and Find Full Text PDF

Mode-cleaning in antisymmetrically modulated non-Hermitian waveguides.

Nanophotonics

March 2024

Department de Fisica, Universitat Politecnica Catalunya, Rambla Sant Nebridi 22, 08222, Terrassa, Barcelona, Spain.

We demonstrate all-optical spatial mode-cleaning in non-Hermitian waveguides. The effect is accounted by a unidirectional coupling among the modes resulting from a simultaneous modulation of the refractive index and the gain/loss along graded index multimodal waveguides. Depending on the spatial delay between the real and imaginary part of the potential modulation, higher or lower order modes are favored, which in latter case eventually leads to an nearly-monomode propagation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!