Cascaded Raman wavelength shifting up to three orders from 1553 nm to 1867 nm is demonstrated in As(2)S(3)-chalcogenide fibers. Due to a long zero dispersion wavelength for the sulfide fiber (>4.5 mum), pumping the fiber at 1553 nm results in generation of cascaded Stokes orders based on stimulated Raman scattering. Using the threshold power for the Raman orders, we estimate the Raman gain coefficient for the As(2)S(3) fibers to be ~5.7x10(-12) m/W at 1550 nm. Observation of higher Raman orders is limited by damage to the fiber at input intensities >1 GW/cm(2).

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.007924DOI Listing

Publication Analysis

Top Keywords

cascaded raman
8
raman wavelength
8
wavelength shifting
8
raman gain
8
gain coefficient
8
raman orders
8
raman
7
third order
4
order cascaded
4
shifting chalcogenide
4

Similar Publications

The utilization of cobalt-based sulfides is constrained by their inherently low conductivity and slow sodium ion diffusion kinetics. Modifying the electronic configuration and constructing heterostructures are promising strategies to enhance intrinsic conductivity and expedite the sodium ion diffusion process. In this study, heterogeneous nanoparticles of Se-substituted CoS2/CoSe2, embedded within heteroatom-modified carbon nanosheet, were synthesized using metal molten salt-assisted dimensionality reduction alongside concurrent sulfurization and selenization techniques.

View Article and Find Full Text PDF

Cascaded Raman fiber lasers (CRFLs) with wavelength-independent feedback can provide power at any wavelength in near-IR regions. However, broad feedback leads to a broad output spectrum, decreasing spectral power density at a desired wavelength. The output characteristics of CRFLs can be controlled by controlling the feedback.

View Article and Find Full Text PDF

Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state.

View Article and Find Full Text PDF

Inhalable micro(nano)plastics (MNPs) have emerged as a significant global concern due to their abundance and persistence in the atmosphere. Despite a growing body of literature addressing the analytical requirements of airborne MNPs, the issue of inhalable fractions and analysis of slotted substrates remains unclear. Therefore, the objective of this study is to perform a systematic particle-based analysis and characterization of inhalable microplastics (MPs) collected by a high-volume sampler equipped with a five-stage cascade impactor with a size range of 10 μm to <0.

View Article and Find Full Text PDF

Multiple coherent radiations are achieved in a water-3-aminopropanol (3AP) mixed solution through cascaded four-wave mixing (C-FWM) and cascaded Stokes (C-Stokes) processes, both driven by stimulated Raman scattering (SRS) in this work. The O-H vibration peak from water is replaced by the emergence of the -NH symmetric stretching Raman peaks from 3AP, with intensity approaching that of the -CH symmetric stretching peak. The dual-wavelength SRS signals for the -NH and -CH stretching vibrations have a relatively small frequency interval of about 400 cm (16 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!