Experimental animal models of bacterial meningitis are useful to study the host-pathogen interactions occurring at the cerebral level and to analyze the pathogenetic mechanisms behind this life-threatening disease. In this study, we have developed a mouse model of meningococcal meningitis based on the intracisternal inoculation of bacteria. Experiments were performed with mouse-passaged serogroup C Neisseria meningitidis. Survival and clinical parameters of infected mice and microbiological and histological analysis of the brain demonstrated the establishment of meningitis with features comparable to those of the disease in humans. When using low bacterial inocula, meningococcal replication in the brain was very efficient, with a 1,000-fold increase of viable counts in 18 h. Meningococci were also found in the blood, spleens, and livers of infected mice, and bacterial loads in different organs were dependent on the infectious dose. As glutamate uptake from the host has been implicated in meningococcal virulence, mice were infected intracisternally with an isogenic strain deficient in the ABC-type L-glutamate transporter GltT. Noticeably, the mutant was attenuated in virulence in mixed infections, indicating that wild-type bacteria outcompeted the GltT-deficient meningococci. The data show that the GltT transporter plays a role in meningitis and concomitant systemic infection, suggesting that meningococci may use L-glutamate as a nutrient source and as a precursor to synthesize the antioxidant glutathione.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737999PMC
http://dx.doi.org/10.1128/IAI.01424-08DOI Listing

Publication Analysis

Top Keywords

abc-type l-glutamate
8
l-glutamate transporter
8
transporter gltt
8
infected mice
8
meningitis
5
meningococcal
4
meningococcal abc-type
4
gltt development
4
development experimental
4
experimental meningitis
4

Similar Publications

The import of nonnatural molecules is a recurring problem in fundamental and applied aspects of microbiology. The dipeptide permease (Dpp) of is an ABC-type multicomponent transporter system located in the cytoplasmic membrane, which is capable of transporting a wide range of di- and tripeptides with structurally and chemically diverse amino acid side chains into the cell. Given this low degree of specificity, Dpp was previously used as an entry gate to deliver natural and nonnatural cargo molecules into the cell by attaching them to amino acid side chains of peptides, in particular, the γ-carboxyl group of glutamate residues.

View Article and Find Full Text PDF

Well-defined amphiphilic polymers of the ABA and ABC type are synthesized, where A is poly(L-lysine hydrochloride) (PLL), B is poly(γ-benzyl-(d7) L-glutamate) (PBLG(-d7)), and C is poly(ethylene oxide) (PEO). The two polymers exhibit similar PBLG(-d7) composition, while in the ABC, the volume fraction of PEO block is higher than that of PLL. Both polymers form polymersomes in water.

View Article and Find Full Text PDF

Experimental animal models of bacterial meningitis are useful to study the host-pathogen interactions occurring at the cerebral level and to analyze the pathogenetic mechanisms behind this life-threatening disease. In this study, we have developed a mouse model of meningococcal meningitis based on the intracisternal inoculation of bacteria. Experiments were performed with mouse-passaged serogroup C Neisseria meningitidis.

View Article and Find Full Text PDF

Self-assembly of polypeptide-containing ABC-type triblock copolymers in aqueous solution and its pH dependence.

Biomacromolecules

March 2007

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.

Self-assembling of novel biodegradable ABC-type triblock copolymer poly(ethylene glycol)-poly(L-lactide)-poly(L-glutamic acid) (PEG-PLLA-PLGA) is studied. In aqueous media, it self-assembles into a spherical micelle with the hydrophobic PLLA segment in the core and the two hydrophilic segments PEG and PLGA in the shell. With the lengths of PEG and PLLA blocks fixed, the diameter of the micelles depends on the length of the PLGA block and on the volume ratio of H(2)O/dimethylformamide (DMF) in the media.

View Article and Find Full Text PDF

Molecular analysis of an operon in Bacillus subtilis encoding a novel ABC transporter with a role in exoprotein production, sporulation and competence.

Microbiology (Reading)

January 1996

National Public Health Institute, Department of Bacterial Vaccine Research and Molecular Bacteriology, Mannerheimintie 166, FIN-00300 Helsinki, Finland.

The levels of exoamylase and other exoenzymes of Bacillus subtilis are pleiotropically decreased by the ecs-26 (prs-26) and ecs-13 (prs-13) mutations. These mutations also cause a competence- and sporulation-deficient phenotype. In the present work, the ecs locus, which has been defined by the ecs-26 and ecs-13 mutations, was cloned and sequenced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!