In order to characterize the so-called coupled processes occurring in compacted clay rocks, the coupling coefficients must be identified. For this purpose, an original device which allows such measurement for undisturbed (natural) samples in their in situ conditions was developed. The present experimental device minimizes the fluid leaks improving the accuracy of the coupling parameter determination. Three chemical osmotic tests were performed on a cylindrical sample of Callovo-Oxfordian argilite. Room temperature variations during the chemical osmosis experiments required the implementation of temperature effects in the numerical model used for the interpretations. These variations offered the opportunity of an alternative method to estimate the compressibility of the fluid in the circuit connected to a measurement chamber located in the center of the sample. An osmotic efficiency of almost 0.2 for a concentration of 0.094 mol L(-1) is obtained for the Callovo-Oxfordian argilite. This value would explain only some part (approximately 0.10-0.15 MPa) of the overpressures (0.5-0.6 MPa) relative to the surrounding reservoirs measured in this formation. Others processes, such as thermo-osmosis, hydrodynamic boundary condition changes due to climate variations or creep behavior of the shale, could explain the remainder of the overpressures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2009.04.092DOI Listing

Publication Analysis

Top Keywords

experimental device
8
chemical osmosis
8
situ conditions
8
callovo-oxfordian argilite
8
device chemical
4
osmosis measurement
4
measurement natural
4
natural clay-rock
4
clay-rock samples
4
samples maintained
4

Similar Publications

Background: Electronic devices like laptops, desktops, and cell phones are now essential in modern life, especially for students, due to their convenience and time-saving benefits. However, concerns about social issues related to prolonged use, particularly among kids and teenagers, have arisen. This study aimed to evaluate the efficacy of an exercise package in mitigating symptoms of eye and neck strain among adolescents who are regular users of electronic devices.

View Article and Find Full Text PDF

In the cultivation of green chili peppers, the similarity between the fruit and background color, along with severe occlusion between fruits and leaves, significantly reduces the efficiency of harvesting robots. While increasing model depth can enhance detection accuracy, complex models are often difficult to deploy on low-cost agricultural devices. This paper presents an improved lightweight Pepper-YOLO model based on YOLOv8n-Pose, designed for simultaneous detection of green chili peppers and picking points.

View Article and Find Full Text PDF

Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-objective Bayesian optimization to design compositions with predicted high values of saturation magnetization, Curie temperature, and Vickers hardness. Experimental validation was conducted on two promising compositions synthesized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and chemical synthesis followed by SPS.

View Article and Find Full Text PDF

This work studies upper-limb impairment resulting from stroke or traumatic brain injury and presents a simple technological solution for a subset of patients: a soft, active stretching aid for at-home use. To better understand the issues associated with existing associated rehabilitation devices, customer discovery conversations were conducted with 153 people in the healthcare ecosystem (60 patients, 30 caregivers, and 63 medical providers). These patients fell into two populations: spastic (stiff, clenched hands) and flaccid (limp hands).

View Article and Find Full Text PDF

The paper outlines the development and optimization of an aerodynamic device for a semi-trailer truck model to reduce aerodynamic drag force. The optimization procedure involves the selection of a basic aerodynamic device shape, using airfoil profiles, and refining its shape and position through established optimization techniques like Full Factorial Design and Response Surface Method within the Design of Experiments framework. The test subject is a 1:10 scale model of the semi-trailer truck.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!