Tumor-targeted vectors encoding toxic protein genes are promising tools for treating malignant tumors. We used the pEGFP-N1 vector to construct a novel plasmid (pCMV-ETA-EGFP) for eukaryotic expression of a truncated Pseudomonas aeruginosa exotoxin A (ETA) that is known to inhibit protein synthesis, and subsequently induce cell death, by inactivation of elongation factor-2. ETA was linked to the enhanced green fluorescent protein (EGFP) gene, and ETA-EGFP gene expression was driven by the cytomegalovirus (CMV) promoter. The time-lapse effects of pCMV-ETA-EGFP expression were examined in transiently transfected HeLa cells. HeLa cells transfected with pCMV-ETA-EGFP or cotransfected with pCMV-ETA-EGFP and small er, Cyrilliccapital IE, CyrillicGFP-N1 showed lower fluorescence intensity than cells transfected with pEGFP-N1 alone. Analysis of the number of dead cells further confirmed the highly toxic effect of the ETA-EGFP fusion protein on cells transfected with pCMV-ETA-EGFP or cotransfected with pCMV-ETA-EGFP and small er, Cyrilliccapital IE, CyrillicGFP-N1. ETA-EGFP fusion protein induced apoptotic cell death through the caspase-3 activation. By using the antibody against a marker nucleolar antigen A3 [Grigoryev, A.A., Bulycheva, T.I., Sheval, E.V., Kalinina, I.A., Zatsepina, O.V., 2008. Cytological indicators of the overall suppression of protein synthesis revealed by staining with new monoclonal antibody. Cell Tissue Biol. 2, 191-199], the distribution of which changes when HeLa cells are treated with known translation inhibitors, we obtained evidence to support the idea that protein synthesis is inhibited in transfected cells in situ. ETA-EGFP fusion protein was identified in lysates of transfected cells using anti-GFP-BL antibodies. Collectively, our results indicate that HeLa cells transfected with pCMV-ETA-EGFP synthesize the ETA-EGFP fusion protein that efficiently inhibits protein synthesis, leading to massive cell death by an apoptosis-mediated pathway with a participation of caspase-3. The constructed vector can be used in suicidal gene therapy of cancer and may also be useful for investigating the general effects of translational downregulation in human cancer cells. We also suggest a novel approach for detecting the activity of new vectors in transfected cells, which is based on the redistribution of nucleolar proteins in transfected cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plasmid.2009.06.004DOI Listing

Publication Analysis

Top Keywords

eta-egfp fusion
20
fusion protein
20
hela cells
20
protein synthesis
16
cells transfected
16
transfected cells
16
cells
13
cell death
12
transfected pcmv-eta-egfp
12
protein
11

Similar Publications

Tumor-targeted vectors encoding toxic protein genes are promising tools for treating malignant tumors. We used the pEGFP-N1 vector to construct a novel plasmid (pCMV-ETA-EGFP) for eukaryotic expression of a truncated Pseudomonas aeruginosa exotoxin A (ETA) that is known to inhibit protein synthesis, and subsequently induce cell death, by inactivation of elongation factor-2. ETA was linked to the enhanced green fluorescent protein (EGFP) gene, and ETA-EGFP gene expression was driven by the cytomegalovirus (CMV) promoter.

View Article and Find Full Text PDF

Adenovirus mediated transduction of the human DNA polymerase eta cDNA.

DNA Repair (Amst)

August 2006

Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374 São Paulo, SP 05508-900, Brazil.

Xeroderma pigmentosum (XP) is an autosomal recessive photosensitive disorder with an extremely high incidence of skin cancers. Seven complementation groups, corresponding to seven proteins involved in nucleotide excision repair (NER), are associated with this syndrome. However, in XP variant patients, the disorder is caused by defects in DNA polymerase eta; this error prone polymerase, encoded by POLH, is involved in translesion DNA synthesis (TLS) on DNA templates damaged by ultraviolet light (UV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!