A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of the intermediate charge-separated state P+betaL- in a leucine M214 to histidine mutant of the Rhodobacter sphaeroides reaction center using femtosecond midinfrared spectroscopy. | LitMetric

AI Article Synopsis

  • The study focuses on the energy and electron transfer mechanisms in a mutant of the Rhodobacter sphaeroides reaction center (LM214H) due to a Leu to His substitution at position M214.
  • The replacement of the native bacteriopheophytin with a bacteriochlorophyll in the cofactor L-branch allows for detailed time-resolved spectroscopy at various excitation wavelengths to analyze the absorption changes of vibrational modes.
  • The findings reveal slower decay rates of the excited states in the LM214H mutant compared to the wild-type, indicating altered electron transfer dynamics and providing new insights into the role of the modified cofactor environment.

Article Abstract

Energy and electron transfer in a Leu M214 to His (LM214H) mutant of the Rhodobacter sphaeroides reaction center (RC) were investigated by applying time-resolved visible pump/midinfrared probe spectroscopy at room temperature. This mutant replacement of the Leu at position M214 resulted in the incorporation of a bacteriochlorophyll (BChl) in place of the native bacteriopheophytin in the L-branch of cofactors (denoted betaL). Purified LM214H RCs were excited at 600 nm (unselective excitation), at 800 nm (direct excitation of the monomeric BChl cofactors B(L) and B(M)), and at 860 nm (direct excitation of the primary donor (P) BChl pair (P(L)/P(M))). Absorption changes associated with carbonyl (C=O) stretch vibrational modes (9-keto, 10a-ester, and 2a-acetyl) of the cofactors and of the protein were recorded in the region between 1600 cm(-1) and 1770 cm(-1), and the data were subjected to both a sequential analysis and a simultaneous target analysis. After photoexcitation of the LM214H RC, P* decayed on a timescale of approximately 6.3 ps to P+BL-. The decay of P+BL- occurred with a lifetime of approximately 2 ps, approximately 3 times slower than that observed in wild-type and R-26 RCs (approximately 0.7 ps). Further electron transfer to the betaL BChl resulted in formation of the P+betaL- state, and its infrared absorbance difference spectrum is reported for the first time, to our knowledge. The fs midinfrared spectra of P+BL- and P+betaL- showed clear differences related to the different environments of the two BChls in the mutant RC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712029PMC
http://dx.doi.org/10.1016/j.bpj.2009.03.031DOI Listing

Publication Analysis

Top Keywords

mutant rhodobacter
8
rhodobacter sphaeroides
8
sphaeroides reaction
8
reaction center
8
electron transfer
8
direct excitation
8
identification intermediate
4
intermediate charge-separated
4
charge-separated state
4
state p+betal-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!