Calcium/calmodulin (Ca/CaM) binds to the intracellular juxtamembrane domain (JMD) of the epidermal growth factor receptor (EGFR). The basic JMD also binds to acidic lipids in the inner leaflet of the plasma membrane, and this interaction may contribute an extra level of autoinhibition to the receptor. Binding of a ligand to the EGFR produces a rapid increase in intracellular calcium, [Ca2+]i, and thus Ca/CaM. How does Ca/CaM compete with the plasma membrane for the JMD? Does Ca/CaM directly pull the JMD off the membrane or does Ca/CaM only bind to the JMD after it has dissociated spontaneously from the bilayer? To answer this question, we studied the effect of Ca/CaM on the rate of dissociation of fluorescent JMD peptides from phospholipid vesicles by making kinetic stop-flow measurements. Ca/CaM increases the rate of dissociation: an analysis of the differential equations that describe the dissociation shows that Ca/CaM must directly pull the basic JMD peptide off the membrane surface. These measurements lead to a detailed atomic-level mechanism for EGFR activation that reconciles the existence of preformed EGFR dimers/oligomers with the Kuriyan allosteric model for activation of the EGFR kinase domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712057PMC
http://dx.doi.org/10.1016/j.bpj.2009.03.027DOI Listing

Publication Analysis

Top Keywords

juxtamembrane domain
8
ca/cam
8
basic jmd
8
plasma membrane
8
ca/cam directly
8
directly pull
8
rate dissociation
8
egfr
6
jmd
6
egfr juxtamembrane
4

Similar Publications

Distinct autoregulatory roles of ELFN1 intracellular and extracellular domains on membrane trafficking, synaptic localization, and dimerization.

J Biol Chem

December 2024

Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA. Electronic address:

Synaptic adhesion molecules are essential components of the synapse, yet the diversity of these molecules and their associated functions remain to be fully characterized. Extracellular leucine rich repeat and fibronectin type III domain containing 1 (ELFN1) is a postsynaptic adhesion molecule in the brain that has been increasingly implicated in human neurological disease. ELFN1 is best known for trans-synaptically modulating group III metabotropic glutamate receptors (mGluRs).

View Article and Find Full Text PDF

Architecture of the high-affinity immunoglobulin E receptor.

Sci Signal

December 2024

Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

The high-affinity immunoglobulin E (IgE) receptor (FcεRI) drives type I hypersensitivity in response to allergen-specific IgE. FcεRI is a multimeric complex typically composed of one α, one β, and two disulfide-linked γ subunits. The α subunit binds to the fragment crystallizable (Fc) region of IgE (Fcε), whereas the β and γ subunits mediate signaling through their intracellular immunoreceptor tyrosine-based activation motifs (ITAMs).

View Article and Find Full Text PDF

Native DGC structure rationalizes muscular dystrophy-causing mutations.

Nature

December 2024

Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.

Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder marked by progressive muscle wasting leading to premature mortality. Discovery of the DMD gene encoding dystrophin both revealed the cause of DMD and helped identify a family of at least ten dystrophin-associated proteins at the muscle cell membrane, collectively forming the dystrophin-glycoprotein complex (DGC). The DGC links the extracellular matrix to the cytoskeleton, but, despite its importance, its molecular architecture has remained elusive.

View Article and Find Full Text PDF

Oncostatin M (OSM) is a unique Interleukin 6 (IL-6) family cytokine that plays pivotal roles in numerous biological events by signaling via two types of receptor complexes. While type I OSM receptor complex is formed by glycoprotein 130 (gp130) heterodimerization with Leukemia Inhibitory Factor receptor (LIFR), type II OSM receptor complex is composed of gp130 and OSM receptor (OSMR). OSM is an important contributor to multiple inflammatory diseases and cancers while OSM inhibition has been shown to be effective at reducing symptoms, making OSM an attractive therapeutic target.

View Article and Find Full Text PDF

Functions of p120-catenin in physiology and diseases.

Front Mol Biosci

October 2024

The First Affiliated Hospital (The First School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China.

p120-catenin (p120) plays a vital role in regulating cell-cell adhesion at adherens junctions, interacting with the juxtamembrane domain (JMD) core region of E-cadherin and regulates the stability of cadherin at the cell surface. Previous studies have shown significant functions of p120 in cell-cell adhesion, tumor progression and inflammation. In this review, we will discuss recent progress of p120 in physiological processes and diseases, and focus on the functions of p120 in the regulation of cancer and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!